定積分 $\int_{0}^{\frac{\pi}{4}} (\cos x + \tan x)^2 dx$ を求める問題です。解析学定積分三角関数積分計算2025/8/71. 問題の内容定積分 ∫0π4(cosx+tanx)2dx\int_{0}^{\frac{\pi}{4}} (\cos x + \tan x)^2 dx∫04π(cosx+tanx)2dx を求める問題です。2. 解き方の手順まず、(cosx+tanx)2(\cos x + \tan x)^2(cosx+tanx)2 を展開します。(cosx+tanx)2=cos2x+2cosxtanx+tan2x(\cos x + \tan x)^2 = \cos^2 x + 2 \cos x \tan x + \tan^2 x(cosx+tanx)2=cos2x+2cosxtanx+tan2xtanx=sinxcosx\tan x = \frac{\sin x}{\cos x}tanx=cosxsinx なので、=cos2x+2sinx+tan2x= \cos^2 x + 2 \sin x + \tan^2 x=cos2x+2sinx+tan2xtan2x=sin2xcos2x\tan^2 x = \frac{\sin^2 x}{\cos^2 x}tan2x=cos2xsin2x であり、1+tan2x=1cos2x1 + \tan^2 x = \frac{1}{\cos^2 x}1+tan2x=cos2x1 なので、 tan2x=1cos2x−1\tan^2 x = \frac{1}{\cos^2 x} - 1tan2x=cos2x1−1 となります。=cos2x+2sinx+1cos2x−1= \cos^2 x + 2 \sin x + \frac{1}{\cos^2 x} - 1=cos2x+2sinx+cos2x1−1よって、積分は∫0π4(cos2x+2sinx+1cos2x−1)dx\int_{0}^{\frac{\pi}{4}} \left(\cos^2 x + 2 \sin x + \frac{1}{\cos^2 x} - 1\right) dx∫04π(cos2x+2sinx+cos2x1−1)dx各項を積分します。∫cos2xdx=∫1+cos2x2dx=x2+sin2x4\int \cos^2 x dx = \int \frac{1 + \cos 2x}{2} dx = \frac{x}{2} + \frac{\sin 2x}{4}∫cos2xdx=∫21+cos2xdx=2x+4sin2x∫2sinxdx=−2cosx\int 2 \sin x dx = -2 \cos x∫2sinxdx=−2cosx∫1cos2xdx=tanx\int \frac{1}{\cos^2 x} dx = \tan x∫cos2x1dx=tanx∫−1dx=−x\int -1 dx = -x∫−1dx=−xしたがって、∫0π4(cos2x+2sinx+1cos2x−1)dx=[x2+sin2x4−2cosx+tanx−x]0π4\int_{0}^{\frac{\pi}{4}} \left(\cos^2 x + 2 \sin x + \frac{1}{\cos^2 x} - 1\right) dx = \left[\frac{x}{2} + \frac{\sin 2x}{4} - 2 \cos x + \tan x - x\right]_{0}^{\frac{\pi}{4}}∫04π(cos2x+2sinx+cos2x1−1)dx=[2x+4sin2x−2cosx+tanx−x]04π=(π8+sinπ24−2cosπ4+tanπ4−π4)−(0+0−2cos0+tan0−0)= \left(\frac{\pi}{8} + \frac{\sin \frac{\pi}{2}}{4} - 2 \cos \frac{\pi}{4} + \tan \frac{\pi}{4} - \frac{\pi}{4}\right) - \left(0 + 0 - 2 \cos 0 + \tan 0 - 0\right)=(8π+4sin2π−2cos4π+tan4π−4π)−(0+0−2cos0+tan0−0)=(π8+14−2⋅22+1−π4)−(−2)= \left(\frac{\pi}{8} + \frac{1}{4} - 2 \cdot \frac{\sqrt{2}}{2} + 1 - \frac{\pi}{4}\right) - (-2)=(8π+41−2⋅22+1−4π)−(−2)=π8−π4+14−2+1+2= \frac{\pi}{8} - \frac{\pi}{4} + \frac{1}{4} - \sqrt{2} + 1 + 2=8π−4π+41−2+1+2=−π8+134−2= - \frac{\pi}{8} + \frac{13}{4} - \sqrt{2}=−8π+413−23. 最終的な答え−π8+134−2-\frac{\pi}{8} + \frac{13}{4} - \sqrt{2}−8π+413−2