与えられた15個の式を因数分解する問題です。代数学因数分解二次式多項式2025/8/71. 問題の内容与えられた15個の式を因数分解する問題です。2. 解き方の手順各式の因数分解を以下に示します。(1) x2+x=x(x+1)x^2 + x = x(x+1)x2+x=x(x+1)(2) 2x2−5x=x(2x−5)2x^2 - 5x = x(2x - 5)2x2−5x=x(2x−5)(3) x2+10x+24=(x+4)(x+6)x^2 + 10x + 24 = (x+4)(x+6)x2+10x+24=(x+4)(x+6)(4) −x2+x+12=−(x2−x−12)=−(x−4)(x+3)=(4−x)(x+3)-x^2 + x + 12 = -(x^2 - x - 12) = -(x-4)(x+3) = (4-x)(x+3)−x2+x+12=−(x2−x−12)=−(x−4)(x+3)=(4−x)(x+3) または (x−4)(−x−3)(x-4)(-x-3)(x−4)(−x−3)(5) x2−4=(x+2)(x−2)x^2 - 4 = (x+2)(x-2)x2−4=(x+2)(x−2)(6) x2−136=(x+16)(x−16)x^2 - \frac{1}{36} = (x + \frac{1}{6})(x - \frac{1}{6})x2−361=(x+61)(x−61)(7) x2y−7xy2=xy(x−7y)x^2y - 7xy^2 = xy(x - 7y)x2y−7xy2=xy(x−7y)(8) 2a2+10a+12=2(a2+5a+6)=2(a+2)(a+3)2a^2 + 10a + 12 = 2(a^2 + 5a + 6) = 2(a+2)(a+3)2a2+10a+12=2(a2+5a+6)=2(a+2)(a+3)(9) x2+3xy−4y2=(x+4y)(x−y)x^2 + 3xy - 4y^2 = (x+4y)(x-y)x2+3xy−4y2=(x+4y)(x−y)(10) 36x2+12x+1=(6x+1)236x^2 + 12x + 1 = (6x+1)^236x2+12x+1=(6x+1)2(11) 25x2−30x+9=(5x−3)225x^2 - 30x + 9 = (5x-3)^225x2−30x+9=(5x−3)2(12) 36x2−25=(6x+5)(6x−5)36x^2 - 25 = (6x+5)(6x-5)36x2−25=(6x+5)(6x−5)(13) 8x2−18y2=2(4x2−9y2)=2(2x+3y)(2x−3y)8x^2 - 18y^2 = 2(4x^2 - 9y^2) = 2(2x+3y)(2x-3y)8x2−18y2=2(4x2−9y2)=2(2x+3y)(2x−3y)(14) −x2+12xy−36y2=−(x2−12xy+36y2)=−(x−6y)2-x^2 + 12xy - 36y^2 = -(x^2 - 12xy + 36y^2) = -(x - 6y)^2−x2+12xy−36y2=−(x2−12xy+36y2)=−(x−6y)2(15) 2a2−4ab−30b2=2(a2−2ab−15b2)=2(a−5b)(a+3b)2a^2 - 4ab - 30b^2 = 2(a^2 - 2ab - 15b^2) = 2(a-5b)(a+3b)2a2−4ab−30b2=2(a2−2ab−15b2)=2(a−5b)(a+3b)3. 最終的な答え(1) x(x+1)x(x+1)x(x+1)(2) x(2x−5)x(2x-5)x(2x−5)(3) (x+4)(x+6)(x+4)(x+6)(x+4)(x+6)(4) −(x−4)(x+3)-(x-4)(x+3)−(x−4)(x+3) または (4−x)(x+3)(4-x)(x+3)(4−x)(x+3)(5) (x+2)(x−2)(x+2)(x-2)(x+2)(x−2)(6) (x+16)(x−16)(x+\frac{1}{6})(x-\frac{1}{6})(x+61)(x−61)(7) xy(x−7y)xy(x-7y)xy(x−7y)(8) 2(a+2)(a+3)2(a+2)(a+3)2(a+2)(a+3)(9) (x+4y)(x−y)(x+4y)(x-y)(x+4y)(x−y)(10) (6x+1)2(6x+1)^2(6x+1)2(11) (5x−3)2(5x-3)^2(5x−3)2(12) (6x+5)(6x−5)(6x+5)(6x-5)(6x+5)(6x−5)(13) 2(2x+3y)(2x−3y)2(2x+3y)(2x-3y)2(2x+3y)(2x−3y)(14) −(x−6y)2-(x-6y)^2−(x−6y)2(15) 2(a−5b)(a+3b)2(a-5b)(a+3b)2(a−5b)(a+3b)