2つの正三角形アとイの面積比を求めます。アの一辺の長さは20cm、イの一辺の長さは45cmです。

幾何学正三角形面積面積比
2025/8/7

1. 問題の内容

2つの正三角形アとイの面積比を求めます。アの一辺の長さは20cm、イの一辺の長さは45cmです。

2. 解き方の手順

正三角形の面積は、一辺の長さをaaとすると、34a2\frac{\sqrt{3}}{4}a^2で表されます。
アの面積をSS_ア、イの面積をSS_イとすると、
S=34×202S_ア = \frac{\sqrt{3}}{4} \times 20^2
S=34×452S_イ = \frac{\sqrt{3}}{4} \times 45^2
面積比は
SS=34×20234×452=202452=4002025\frac{S_ア}{S_イ} = \frac{\frac{\sqrt{3}}{4} \times 20^2}{\frac{\sqrt{3}}{4} \times 45^2} = \frac{20^2}{45^2} = \frac{400}{2025}
この比を最も簡単な整数比にするために、両方を25で割ります。
40025=16\frac{400}{25} = 16
202525=81\frac{2025}{25} = 81
したがって、面積比は16:81となります。

3. 最終的な答え

16 : 81

「幾何学」の関連問題

三角形ABCにおいて、$AB = 5$, $BC = 6$, $CA = 3$とする。 (1) 角BACの二等分線と辺BCの交点をD、角ABCの二等分線と線分ADの交点をIとするとき、$AI:ID$を...

三角形角の二等分線メネラウスの定理
2025/8/13

三角比の値が与えられたときに、別の三角比の値を求める問題です。 (1) $\cos \theta = \frac{1}{2}$ ( $0^\circ \le \theta \le 180^\circ$...

三角比三角関数三角恒等式
2025/8/13

円に内接する四角形ABCDにおいて、$AB = 3$, $BC = 4$, $CD = 5$, $DA = 6$ であるとき、以下の値を求めます。 (1) $AC$ の長さ (2) $\cos B$ ...

四角形余弦定理正弦定理面積外接円
2025/8/13

問題は2つのパートに分かれています。 パート1:次の三角関数の値を求めなさい。 (1) $cos 0^\circ$ (2) $sin 90^\circ$ (3) $sin 135^\circ$ (4)...

三角関数三角比角度単位円
2025/8/13

$AB = 3$, $BC = 4$, $CA = 5$ の直角三角形 $ABC$ がある。$\triangle ABC$ の内接円の中心を $I$ とし、内接円と $AB$ の接点を $H$ とする...

三角形直角三角形内接円角の二等分線三平方の定理
2025/8/13

四角形ABCDが円Oに内接し、CDが円Oの直径である。AB=5, AD=3であり、直線BC, AD, ABは点C, D, Eにおいて、それぞれ円Oに接している。 (1) 辺BCの長さを求めよ。 (2)...

四角形接線方べきの定理メネラウスの定理相似三平方の定理
2025/8/13

座標平面上に円 $C: x^2 + y^2 - 2\sqrt{3}x - 2y = 0$ がある。 (1) 円Cの中心Aの座標と半径を求める。 (2) 円Cの中心Aと直線 $l: y = \sqrt{...

座標平面面積最大値最小値点と直線の距離
2025/8/13

(1) 2点 $A(-5, 4)$, $B(1, 2)$ を結ぶ線分の垂直二等分線の方程式を求めよ。 (2) 3点 $O(0, 0)$, $A(8, 0)$, $B(0, 6)$ を通る円の中心の座標...

平面幾何直線垂直二等分線対称な点
2025/8/13

(1) 正五角形の3個の頂点を結んでできる三角形の個数を求め、さらにそのうち正五角形と2辺を共有する三角形の個数を求める。 (2) 正五角形の2個の頂点を結んでできる線分の本数を求める。

組み合わせ正多角形図形
2025/8/13

与えられた条件を満たす方程式または座標を求める問題です。 (1) 2点 $A(-1, 2)$ と $B(7, 6)$ に対して、線分 $AB$ を $1:3$ に内分する点の座標を求める。 (2) 2...

座標平面直線内分点点と直線の距離接線
2025/8/13