与えられた方程式 $2x = 8$ を解き、$y = 4$という条件の下で、xの値を求める問題です。

代数学一次方程式方程式の解法変数
2025/4/6

1. 問題の内容

与えられた方程式 2x=82x = 8 を解き、y=4y = 4という条件の下で、xの値を求める問題です。

2. 解き方の手順

まず、2x=82x = 8 の方程式を解きます。
方程式の両辺を2で割ります。
2x2=82\frac{2x}{2} = \frac{8}{2}
x=4x = 4
問題には y=4y=4 という条件も与えられていますが、これは xx の値を求める際には直接関係ありません。xx の値は、2x=82x = 8 を解くことで直接求まります。

3. 最終的な答え

x=4x = 4

「代数学」の関連問題

不等式 $2 \le |x-3| < 5$ を解く問題です。

不等式絶対値不等式の解法
2025/4/20

実数 $a, k$ に対して、2つの関数 $f(x) = x^2 + (2-2a)x - 6a + 3$ と $g(x) = 2x^2 - 2ax - \frac{1}{2}a^2 + 2a + k$...

二次関数平方完成最大・最小関数のグラフ
2025/4/20

与えられた式 $ \frac{2 \log_3 2}{2} $ を計算せよ。

対数計算
2025/4/20

$f(x) = x^2 + (2-2a)x - 6a + 3$ と $g(x) = 2x^2 - 2ax - \frac{1}{2}a^2 + 2a + k$ が与えられている。$f(x)$ の最小値...

二次関数最小値平方完成関数の最大・最小
2025/4/20

与えられた式を計算する問題です。式は $\frac{2^{\log_3 2}}{2}$ です。

指数対数指数法則対数法則
2025/4/20

与えられた式 $16x^2 + 24xy + 9y^2$ を因数分解する問題です。

因数分解多項式展開公式
2025/4/20

問題は、与えられた式を因数分解することです。与えられた式は $x^2 - 18xy + 81y^2$ です。

因数分解二次式展開数式
2025/4/20

与えられた2次式 $2x^2 - 10x + 12$ を因数分解してください。

因数分解二次式
2025/4/20

与えられた2次関数 $f(x) = x^2 + (2-2a)x - 6a + 3$ と $g(x) = 2x^2 - 2ax - \frac{1}{2}a^2 + 2a + k$ について、以下の問い...

二次関数平方完成関数の最小値不等式二次方程式
2025/4/20

問題は、与えられた多項式について、以下の設問に答えるものです。 基本1: 単項式の係数と次数を求め、指定された文字に着目した場合の係数と次数を求める。 基本2: 多項式の同類項をまとめ、その式の次数を...

多項式単項式次数係数同類項降べきの順展開計算
2025/4/20