$a$ を定数とする。2次関数 $y = x^2 - 3x - a + 2$ のグラフを $C$ とする。$C$ が $x$ 軸の正の部分と負の部分のそれぞれと交わるとき、$a$ のとり得る値の範囲を求める。

代数学二次関数グラフ不等式二次方程式の解の配置
2025/8/8

1. 問題の内容

aa を定数とする。2次関数 y=x23xa+2y = x^2 - 3x - a + 2 のグラフを CC とする。CCxx 軸の正の部分と負の部分のそれぞれと交わるとき、aa のとり得る値の範囲を求める。

2. 解き方の手順

2次関数のグラフが xx 軸の正の部分と負の部分で交わるということは、2次関数が x=0x = 0 のとき負の値をとるということである。なぜなら、グラフが xx 軸の正の部分と負の部分で交わるためには、x=0x=0 のとき、yy の値が負でなければならないからである。
したがって、x=0x = 0y=x23xa+2y = x^2 - 3x - a + 2 に代入して、yy の値を計算する。
y=(0)23(0)a+2=a+2y = (0)^2 - 3(0) - a + 2 = -a + 2
これが負の値になるので、
a+2<0-a + 2 < 0
これを aa について解くと、
a>2a > 2

3. 最終的な答え

a>2a > 2

「代数学」の関連問題

2つの2次不等式 $x^2 - 4x - 3 \le 0$ ...① $x^2 - ax - 2a^2 \le 0$ ...② について、①の解を求め、①の解がすべて②の解に含まれるような最小...

二次不等式解の範囲整数
2025/8/8

与えられた二次関数 $y = ax^2 + bx + c$ のグラフから、$a, b, c$ の符号と、$b^2$ と $4ac$ の大小関係を判断する問題です。

二次関数グラフ判別式不等式
2025/8/8

与えられた多項式 $4ab^2 - b^3$ の次数を求める問題です。

多項式次数
2025/8/8

単項式 $4x^3y^2$ の係数と次数を求める問題です。

単項式係数次数代数
2025/8/8

$x \ge 0$, $y \ge 0$, $x+y=4$ のとき、$x$ のとりうる値の範囲を求め、さらに $x^2+y^2$ の最大値と最小値を求める問題です。

最大値最小値二次関数不等式数式処理
2025/8/8

与えられた二次関数 $y = ax^2 + bx + c$ のグラフから、係数 $a$, $b$, $c$ の符号および $b^2$ と $4ac$ の大小関係を判断する問題です。

二次関数グラフ係数不等式
2025/8/8

(1) $x+2y+12=0$ のとき、$xy$ の最大値を求めよ。 (2) $x \geq 0$, $y \geq 0$, $x+y=4$ のとき、$x$ のとりうる値の範囲を求めよ。

最大値二次関数不等式条件付き最大値
2025/8/8

(1) $x + 2y + 12 = 0$ のとき、$xy$ の最大値を求めよ。 (2) $x \geq 0$, $y \geq 0$, $x + y = 4$ のとき、$x$ のとりうる値の範囲を求...

最大値最小値二次関数不等式
2025/8/8

以下の5つの問題を解きます。 (1) $(2x-1)(3x+4) - (x+6)(x-1)$ を展開し、整理する。 (2) $2x^2 + xy - y^2$ を因数分解する。 (3) $a = 5\...

展開因数分解不等式絶対値二次方程式
2025/8/8

多項式 $P$ と $Q$ が与えられています。 $P = 3x^4 - x^3 - 4x^2 - x + 3$ $Q = 3x^5 + 2x^4 - 5x^3 - 5x^2 + 2x + 3$ (1...

多項式因数分解方程式解の公式複素数
2025/8/8