$x = \frac{1}{\sqrt{11} + \sqrt{10}}$ と $y = \frac{1}{\sqrt{11} - \sqrt{10}}$ が与えられたとき、$x+y$ の値を求めよ。

代数学式の計算有理化平方根
2025/8/9

1. 問題の内容

x=111+10x = \frac{1}{\sqrt{11} + \sqrt{10}}y=11110y = \frac{1}{\sqrt{11} - \sqrt{10}} が与えられたとき、x+yx+y の値を求めよ。

2. 解き方の手順

まず、xxyy をそれぞれ有理化します。
xx の有理化:
x=111+10=1110(11+10)(1110)=11101110=1110x = \frac{1}{\sqrt{11} + \sqrt{10}} = \frac{\sqrt{11} - \sqrt{10}}{(\sqrt{11} + \sqrt{10})(\sqrt{11} - \sqrt{10})} = \frac{\sqrt{11} - \sqrt{10}}{11 - 10} = \sqrt{11} - \sqrt{10}
yy の有理化:
y=11110=11+10(1110)(11+10)=11+101110=11+10y = \frac{1}{\sqrt{11} - \sqrt{10}} = \frac{\sqrt{11} + \sqrt{10}}{(\sqrt{11} - \sqrt{10})(\sqrt{11} + \sqrt{10})} = \frac{\sqrt{11} + \sqrt{10}}{11 - 10} = \sqrt{11} + \sqrt{10}
次に、x+yx+y を計算します。
x+y=(1110)+(11+10)=211x+y = (\sqrt{11} - \sqrt{10}) + (\sqrt{11} + \sqrt{10}) = 2\sqrt{11}

3. 最終的な答え

x+y=211x+y = 2\sqrt{11}

「代数学」の関連問題

与えられた画像には5つの問題があります。それぞれ以下の通りです。 (1) 2次方程式 $x^2 + 2x + 3 = 0$ の2つの解を $\alpha$、$\beta$ とするとき、$\alpha^...

二次方程式解と係数の関係因数分解剰余の定理
2025/8/9

2次関数 $y = x^2 - (a+3)x + a^2$ のグラフが与えられた条件を満たすように、定数 $a$ の値の範囲を求める。 (1) $x$ 軸の $x > 1$ の部分と異なる2点で交わる...

二次関数二次方程式グラフ判別式不等式解の配置
2025/8/9

二次方程式 $16x^2 - 24x + 9 = 0$ を解き、$x$ の値を分数で求めます。

二次方程式因数分解解の公式分数
2025/8/9

(7) 多項式 $x^3 - 3x^2 - 4x + 8$ を $x+2$ で割ったときの余りを求める。 (8) 多項式 $x^3 - ax + 4$ が $x-1$ を因数に持つとき、定数 $a$ ...

多項式剰余の定理因数定理因数分解
2025/8/9

与えられた方程式 $5(1 + 2\log_3 x) - 4(\log_3 x)^2 + 1 = 0$ を解き、$2(\log_3 x)^2 - 5\log_3 x - 3 = 0$ を解く問題です。

対数二次方程式方程式
2025/8/9

2次方程式 $4x^2 + 5x - 3 = 0$ の2つの解を $\alpha$ 、$\beta$ とするとき、$\alpha - \alpha\beta + \beta$ の値を求めます。

二次方程式解と係数の関係
2025/8/9

多項式 $x^3 - 3x^2 - 4x + 8$ を $x + 2$ で割ったときの余りを求めます。

多項式剰余の定理因数定理因数分解
2025/8/9

$x^3 + y^3 + xy(xy + 1)$ を因数分解します。

因数分解多項式
2025/8/9

$x^3 + y^3 + xy(x+y+1)$ を因数分解しなさい。

因数分解多項式
2025/8/9

画像にある数学の問題を解きます。具体的には、以下の問題です。 問題2の(1) $4x + 7 = 19$、(2) $1 - 6x = 13$、(3) $3y + 22 = 6 - 5y$、(4) $6...

一次方程式文章問題連立方程式
2025/8/9