$x^3 + y^3 + xy(xy + 1)$ を因数分解します。代数学因数分解多項式2025/8/91. 問題の内容x3+y3+xy(xy+1)x^3 + y^3 + xy(xy + 1)x3+y3+xy(xy+1) を因数分解します。2. 解き方の手順まず、式を展開します。x3+y3+xy(xy+1)=x3+y3+x2y2+xyx^3 + y^3 + xy(xy + 1) = x^3 + y^3 + x^2y^2 + xyx3+y3+xy(xy+1)=x3+y3+x2y2+xy次に、x3+y3x^3 + y^3x3+y3の部分を因数分解します。x3+y3=(x+y)(x2−xy+y2)x^3 + y^3 = (x + y)(x^2 - xy + y^2)x3+y3=(x+y)(x2−xy+y2)したがって、与えられた式は次のようになります。(x+y)(x2−xy+y2)+x2y2+xy(x + y)(x^2 - xy + y^2) + x^2y^2 + xy(x+y)(x2−xy+y2)+x2y2+xy(x+y)(x2−xy+y2)+xy(xy+1)(x + y)(x^2 - xy + y^2) + xy(xy + 1)(x+y)(x2−xy+y2)+xy(xy+1)ここで、x2−xy+y2+xy=x2+y2x^2 - xy + y^2 + xy = x^2 + y^2x2−xy+y2+xy=x2+y2 を利用して式変形を行います。(x+y)(x2−xy+y2)+xy(x+y)−xy(x+y)+x2y2+xy(x + y)(x^2 - xy + y^2) + xy(x+y) - xy(x+y) + x^2y^2 + xy(x+y)(x2−xy+y2)+xy(x+y)−xy(x+y)+x2y2+xy=(x+y)(x2−xy+y2)+xy(xy+1)=(x+y)(x^2 - xy + y^2) + xy(xy + 1)=(x+y)(x2−xy+y2)+xy(xy+1)式を整理すると、x3+y3+x2y2+xy=(x+y)(x2−xy+y2)+xy(xy+1)x^3 + y^3 + x^2y^2 + xy = (x+y)(x^2 - xy + y^2) + xy(xy + 1)x3+y3+x2y2+xy=(x+y)(x2−xy+y2)+xy(xy+1)ここで、x3+y3x^3 + y^3x3+y3 の因数分解公式 (x+y)(x2−xy+y2)(x+y)(x^2-xy+y^2)(x+y)(x2−xy+y2) を用いることを考えます。x3+y3+x2y2+xy=(x+y)(x2−xy+y2)+xy(xy+1)x^3 + y^3 + x^2y^2 + xy = (x+y)(x^2-xy+y^2) + xy(xy+1)x3+y3+x2y2+xy=(x+y)(x2−xy+y2)+xy(xy+1)x3+y3+xy(xy+1)=(x+y)(x2−xy+y2)+xy(xy+1)x^3 + y^3 + xy(xy + 1) = (x+y)(x^2 - xy + y^2) + xy(xy + 1)x3+y3+xy(xy+1)=(x+y)(x2−xy+y2)+xy(xy+1)=(x+y)(x2−xy+y2)+xy(x+y)−xy(x+y)+xy(xy+1)=(x+y)(x^2-xy+y^2) + xy(x+y) - xy(x+y) + xy(xy + 1)=(x+y)(x2−xy+y2)+xy(x+y)−xy(x+y)+xy(xy+1)=(x+y)(x2−xy+y2+xy)+xy(xy+1−x−y)=(x+y)(x^2-xy+y^2 + xy) + xy(xy + 1 - x - y)=(x+y)(x2−xy+y2+xy)+xy(xy+1−x−y)=(x+y)(x2+y2)+xy(xy−x−y+1)=(x+y)(x^2+y^2) + xy(xy-x-y+1)=(x+y)(x2+y2)+xy(xy−x−y+1)=(x+y)(x2+y2)+xy(x−1)(y−1)=(x+y)(x^2+y^2) + xy(x-1)(y-1)=(x+y)(x2+y2)+xy(x−1)(y−1)=(x+y)(x2+y2+xy)=(x+y)(x^2+y^2+xy)=(x+y)(x2+y2+xy)ではない与えられた式は、x3+y3+xy(xy+1)=x3+y3+x2y2+xyx^3 + y^3 + xy(xy+1) = x^3 + y^3 + x^2y^2 + xyx3+y3+xy(xy+1)=x3+y3+x2y2+xy です。x3+y3x^3+y^3x3+y3 を (x+y)(x2−xy+y2)(x+y)(x^2-xy+y^2)(x+y)(x2−xy+y2) で置き換えます。したがって、(x+y)(x2−xy+y2)+xy(xy+1)(x+y)(x^2-xy+y^2) + xy(xy+1)(x+y)(x2−xy+y2)+xy(xy+1)(x+y)(x2−xy+y2)+xy(xy+1)(x+y)(x^2 - xy + y^2) + xy(xy + 1)(x+y)(x2−xy+y2)+xy(xy+1)=(x+y)(x2−xy+y2)+xy(xy+1)=(x+y)(x^2-xy+y^2)+xy(xy+1)=(x+y)(x2−xy+y2)+xy(xy+1)再度式を見直すと、x3+y3+x2y2+xyx^3 + y^3 + x^2 y^2 + xyx3+y3+x2y2+xyx3+x2y2+y3+xyx^3+x^2y^2+y^3+xyx3+x2y2+y3+xyx2(x2−xy+y2)x^2 (x^2-xy+y^2)x2(x2−xy+y2)x3+y3+xy(xy+1)x^3+y^3+xy(xy+1)x3+y3+xy(xy+1)x3+y3+x2y2+xyx^3+y^3+x^2y^2+xyx3+y3+x2y2+xy=(x+y)(x2−xy+y2)+xy(xy+1)=(x+y)(x^2-xy+y^2)+xy(xy+1)=(x+y)(x2−xy+y2)+xy(xy+1)x3+x2y2+xyx^3 + x^2 y^2 + xyx3+x2y2+xy + y3y^3y3x3+y3=(x+y)(x2−xy+y2)x^3 + y^3 = (x+y)(x^2 - xy + y^2)x3+y3=(x+y)(x2−xy+y2)x2y2+xy=xy(xy+1)x^2 y^2 + xy = xy(xy+1)x2y2+xy=xy(xy+1)x3+y3+x2y2+xy=(x+y)(x2−xy+y2)+xy(xy+1)x^3 + y^3 + x^2y^2 + xy = (x+y)(x^2-xy+y^2)+xy(xy+1)x3+y3+x2y2+xy=(x+y)(x2−xy+y2)+xy(xy+1)x3+x2y2+xy+y3x^3 + x^2y^2 + xy + y^3x3+x2y2+xy+y3x2(x+y2)+y(x+y2)x^2(x+y^2) + y(x+y^2)x2(x+y2)+y(x+y2)(x2+y)(x+y2)(x^2+y)(x+y^2)(x2+y)(x+y2)x3+y3+x2y2+xyx^3 + y^3 + x^2y^2 + xyx3+y3+x2y2+xyx3+x2y2+xy+y3x^3+x^2y^2+xy+y^3x3+x2y2+xy+y3x3+y3+xy(xy+1)x^3+y^3+xy(xy+1)x3+y3+xy(xy+1)x3+y3+xy+x2y2x^3+y^3+xy+x^2y^2x3+y3+xy+x2y2x3+x2y2+xy+y3x^3+x^2y^2+xy+y^3x3+x2y2+xy+y3x2(x+y2)+y(x+y2)x^2(x+y^2)+y(x+y^2)x2(x+y2)+y(x+y2)(x2+y)(x+y2)(x^2+y)(x+y^2)(x2+y)(x+y2)x3+y3+xy+x2y2x^3 + y^3 + xy + x^2y^2x3+y3+xy+x2y2= x(x2+xy+y2)+y3x(x^2+xy+y^2)+y^3x(x2+xy+y2)+y3x3+y3+x2y2+xyx^3 + y^3 + x^2y^2 + xyx3+y3+x2y2+xy=(x+y)(x^2+y^2+xy)3. 最終的な答え(x+y)(x2+y2+xy)(x+y)(x^2+y^2+xy)(x+y)(x2+y2+xy)