与えられた計算問題を解く。問題はStep2の(1)から(6)とStep3の(1)から(4)まで、合計10問ある。代数学平方根有理化式の計算2025/8/91. 問題の内容与えられた計算問題を解く。問題はStep2の(1)から(6)とStep3の(1)から(4)まで、合計10問ある。2. 解き方の手順Step2(1) (5−2)2=(5)2−2⋅5⋅2+22=5−45+4=9−45(\sqrt{5}-2)^2 = (\sqrt{5})^2 - 2 \cdot \sqrt{5} \cdot 2 + 2^2 = 5 - 4\sqrt{5} + 4 = 9 - 4\sqrt{5}(5−2)2=(5)2−2⋅5⋅2+22=5−45+4=9−45(2) (26+6)2=(26)2+2⋅26⋅6+62=4⋅6+246+36=24+246+36=60+246(2\sqrt{6}+6)^2 = (2\sqrt{6})^2 + 2 \cdot 2\sqrt{6} \cdot 6 + 6^2 = 4 \cdot 6 + 24\sqrt{6} + 36 = 24 + 24\sqrt{6} + 36 = 60 + 24\sqrt{6}(26+6)2=(26)2+2⋅26⋅6+62=4⋅6+246+36=24+246+36=60+246(3) (33−1)2=(33)2−2⋅33⋅1+12=9⋅3−63+1=27−63+1=28−63(3\sqrt{3}-1)^2 = (3\sqrt{3})^2 - 2 \cdot 3\sqrt{3} \cdot 1 + 1^2 = 9 \cdot 3 - 6\sqrt{3} + 1 = 27 - 6\sqrt{3} + 1 = 28 - 6\sqrt{3}(33−1)2=(33)2−2⋅33⋅1+12=9⋅3−63+1=27−63+1=28−63(4) 13+2=3−2(3+2)(3−2)=3−23−2=3−21=3−2\frac{1}{\sqrt{3}+\sqrt{2}} = \frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})} = \frac{\sqrt{3}-\sqrt{2}}{3-2} = \frac{\sqrt{3}-\sqrt{2}}{1} = \sqrt{3} - \sqrt{2}3+21=(3+2)(3−2)3−2=3−23−2=13−2=3−2(5) 27−5=2(7+5)(7−5)(7+5)=2(7+5)7−5=2(7+5)2=7+5\frac{2}{\sqrt{7}-\sqrt{5}} = \frac{2(\sqrt{7}+\sqrt{5})}{(\sqrt{7}-\sqrt{5})(\sqrt{7}+\sqrt{5})} = \frac{2(\sqrt{7}+\sqrt{5})}{7-5} = \frac{2(\sqrt{7}+\sqrt{5})}{2} = \sqrt{7}+\sqrt{5}7−52=(7−5)(7+5)2(7+5)=7−52(7+5)=22(7+5)=7+5(6) 411−3=4(11+3)(11−3)(11+3)=4(11+3)11−9=4(11+3)2=2(11+3)=211+6\frac{4}{\sqrt{11}-3} = \frac{4(\sqrt{11}+3)}{(\sqrt{11}-3)(\sqrt{11}+3)} = \frac{4(\sqrt{11}+3)}{11-9} = \frac{4(\sqrt{11}+3)}{2} = 2(\sqrt{11}+3) = 2\sqrt{11}+611−34=(11−3)(11+3)4(11+3)=11−94(11+3)=24(11+3)=2(11+3)=211+6Step3(1) (22+3)2=(22)2+2⋅22⋅3+(3)2=4⋅2+46+3=8+46+3=11+46(2\sqrt{2}+\sqrt{3})^2 = (2\sqrt{2})^2 + 2 \cdot 2\sqrt{2} \cdot \sqrt{3} + (\sqrt{3})^2 = 4 \cdot 2 + 4\sqrt{6} + 3 = 8 + 4\sqrt{6} + 3 = 11 + 4\sqrt{6}(22+3)2=(22)2+2⋅22⋅3+(3)2=4⋅2+46+3=8+46+3=11+46(2) (56−25)2=(56)2−2⋅56⋅25+(25)2=25⋅6−2030+4⋅5=150−2030+20=170−2030(5\sqrt{6}-2\sqrt{5})^2 = (5\sqrt{6})^2 - 2 \cdot 5\sqrt{6} \cdot 2\sqrt{5} + (2\sqrt{5})^2 = 25 \cdot 6 - 20\sqrt{30} + 4 \cdot 5 = 150 - 20\sqrt{30} + 20 = 170 - 20\sqrt{30}(56−25)2=(56)2−2⋅56⋅25+(25)2=25⋅6−2030+4⋅5=150−2030+20=170−2030(3) 5−35+3=(5−3)(5−3)(5+3)(5−3)=(5−3)25−3=(5)2−2⋅5⋅3+(3)22=5−215+32=8−2152=4−15\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}} = \frac{(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{(\sqrt{5}-\sqrt{3})^2}{5-3} = \frac{(\sqrt{5})^2 - 2 \cdot \sqrt{5} \cdot \sqrt{3} + (\sqrt{3})^2}{2} = \frac{5 - 2\sqrt{15} + 3}{2} = \frac{8 - 2\sqrt{15}}{2} = 4 - \sqrt{15}5+35−3=(5+3)(5−3)(5−3)(5−3)=5−3(5−3)2=2(5)2−2⋅5⋅3+(3)2=25−215+3=28−215=4−15(4) 56−2556+25=(56−25)(56−25)(56+25)(56−25)=(56−25)2(56)2−(25)2=(56)2−2⋅56⋅25+(25)225⋅6−4⋅5=25⋅6−2030+4⋅5150−20=150−2030+20130=170−2030130=17−23013\frac{5\sqrt{6}-2\sqrt{5}}{5\sqrt{6}+2\sqrt{5}} = \frac{(5\sqrt{6}-2\sqrt{5})(5\sqrt{6}-2\sqrt{5})}{(5\sqrt{6}+2\sqrt{5})(5\sqrt{6}-2\sqrt{5})} = \frac{(5\sqrt{6}-2\sqrt{5})^2}{(5\sqrt{6})^2-(2\sqrt{5})^2} = \frac{(5\sqrt{6})^2 - 2 \cdot 5\sqrt{6} \cdot 2\sqrt{5} + (2\sqrt{5})^2}{25 \cdot 6 - 4 \cdot 5} = \frac{25 \cdot 6 - 20\sqrt{30} + 4 \cdot 5}{150 - 20} = \frac{150 - 20\sqrt{30} + 20}{130} = \frac{170 - 20\sqrt{30}}{130} = \frac{17 - 2\sqrt{30}}{13}56+2556−25=(56+25)(56−25)(56−25)(56−25)=(56)2−(25)2(56−25)2=25⋅6−4⋅5(56)2−2⋅56⋅25+(25)2=150−2025⋅6−2030+4⋅5=130150−2030+20=130170−2030=1317−2303. 最終的な答えStep2(1) 9−459 - 4\sqrt{5}9−45(2) 60+24660 + 24\sqrt{6}60+246(3) 28−6328 - 6\sqrt{3}28−63(4) 3−2\sqrt{3} - \sqrt{2}3−2(5) 7+5\sqrt{7}+\sqrt{5}7+5(6) 211+62\sqrt{11}+6211+6Step3(1) 11+4611 + 4\sqrt{6}11+46(2) 170−2030170 - 20\sqrt{30}170−2030(3) 4−154 - \sqrt{15}4−15(4) 17−23013\frac{17 - 2\sqrt{30}}{13}1317−230