$\sum_{k=1}^{n} k(k+n)$ を $n$ を用いて表す。代数学シグマ数列総和数式展開2025/8/111. 問題の内容∑k=1nk(k+n)\sum_{k=1}^{n} k(k+n)∑k=1nk(k+n) を nnn を用いて表す。2. 解き方の手順まず、∑k=1nk(k+n)\sum_{k=1}^{n} k(k+n)∑k=1nk(k+n) を展開します。∑k=1nk(k+n)=∑k=1n(k2+nk)=∑k=1nk2+n∑k=1nk\sum_{k=1}^{n} k(k+n) = \sum_{k=1}^{n} (k^2 + nk) = \sum_{k=1}^{n} k^2 + n\sum_{k=1}^{n} k∑k=1nk(k+n)=∑k=1n(k2+nk)=∑k=1nk2+n∑k=1nk次に、∑k=1nk2\sum_{k=1}^{n} k^2∑k=1nk2 と ∑k=1nk\sum_{k=1}^{n} k∑k=1nk をそれぞれ計算します。∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)これらの結果を元の式に代入します。∑k=1nk2+n∑k=1nk=n(n+1)(2n+1)6+n⋅n(n+1)2\sum_{k=1}^{n} k^2 + n\sum_{k=1}^{n} k = \frac{n(n+1)(2n+1)}{6} + n \cdot \frac{n(n+1)}{2}∑k=1nk2+n∑k=1nk=6n(n+1)(2n+1)+n⋅2n(n+1)共通因数 n(n+1)6\frac{n(n+1)}{6}6n(n+1) でくくります。n(n+1)(2n+1)6+n⋅n(n+1)2=n(n+1)(2n+1)6+3n2(n+1)6=n(n+1)6(2n+1+3n)\frac{n(n+1)(2n+1)}{6} + n \cdot \frac{n(n+1)}{2} = \frac{n(n+1)(2n+1)}{6} + \frac{3n^2(n+1)}{6} = \frac{n(n+1)}{6} (2n+1 + 3n)6n(n+1)(2n+1)+n⋅2n(n+1)=6n(n+1)(2n+1)+63n2(n+1)=6n(n+1)(2n+1+3n)括弧の中を整理します。n(n+1)6(5n+1)\frac{n(n+1)}{6} (5n+1)6n(n+1)(5n+1)よって、答えは n(n+1)(5n+1)6\frac{n(n+1)(5n+1)}{6}6n(n+1)(5n+1) となります。3. 最終的な答えn(n+1)(5n+1)6\frac{n(n+1)(5n+1)}{6}6n(n+1)(5n+1)