数列 $\{a_n\}$ が漸化式 $a_1 = 4$, $a_{2n} = \frac{1}{4} a_{2n-1} + n^2$, $a_{2n+1} = 4a_{2n} + 4(n+1)$ で定義される。 (1) $a_2, a_3, a_4, a_5$ を求めよ。 (2) $a_{2n}, a_{2n+1}$ を $n$ を用いて表せ。 (3) $\{a_n\}$ の項で 4 の倍数でないものを、n の値が小さいものから4項並べよ。

代数学数列漸化式
2025/8/11

1. 問題の内容

数列 {an}\{a_n\} が漸化式 a1=4a_1 = 4, a2n=14a2n1+n2a_{2n} = \frac{1}{4} a_{2n-1} + n^2, a2n+1=4a2n+4(n+1)a_{2n+1} = 4a_{2n} + 4(n+1) で定義される。
(1) a2,a3,a4,a5a_2, a_3, a_4, a_5 を求めよ。
(2) a2n,a2n+1a_{2n}, a_{2n+1}nn を用いて表せ。
(3) {an}\{a_n\} の項で 4 の倍数でないものを、n の値が小さいものから4項並べよ。

2. 解き方の手順

(1) a2,a3,a4,a5a_2, a_3, a_4, a_5 を求める。
a2=14a1+12=14(4)+1=1+1=2a_2 = \frac{1}{4}a_1 + 1^2 = \frac{1}{4}(4) + 1 = 1 + 1 = 2
a3=4a2+4(1+1)=4(2)+4(2)=8+8=16a_3 = 4a_2 + 4(1+1) = 4(2) + 4(2) = 8 + 8 = 16
a4=14a3+22=14(16)+4=4+4=8a_4 = \frac{1}{4}a_3 + 2^2 = \frac{1}{4}(16) + 4 = 4 + 4 = 8
a5=4a4+4(2+1)=4(8)+4(3)=32+12=44a_5 = 4a_4 + 4(2+1) = 4(8) + 4(3) = 32 + 12 = 44
(2) a2n,a2n+1a_{2n}, a_{2n+1}nn を用いて表す。
a2n=14a2n1+n2a_{2n} = \frac{1}{4} a_{2n-1} + n^2, a2n+1=4a2n+4(n+1)a_{2n+1} = 4a_{2n} + 4(n+1)
a2n+1=4(14a2n1+n2)+4(n+1)=a2n1+4n2+4n+4a_{2n+1} = 4 (\frac{1}{4} a_{2n-1} + n^2) + 4(n+1) = a_{2n-1} + 4n^2 + 4n + 4
ここでa2n+1a2n1=4n2+4n+4a_{2n+1} - a_{2n-1} = 4n^2 + 4n + 4
a1=4a_1 = 4なので
a3a1=4(12)+4(1)+4=12a_3 - a_1 = 4(1^2) + 4(1) + 4 = 12
a3=a1+12=4+12=16a_3 = a_1 + 12 = 4 + 12 = 16
a5a3=4(22)+4(2)+4=16+8+4=28a_5 - a_3 = 4(2^2) + 4(2) + 4 = 16 + 8 + 4 = 28
a5=a3+28=16+28=44a_5 = a_3 + 28 = 16 + 28 = 44
a2n+1=a1+k=1n(4k2+4k+4)a_{2n+1} = a_1 + \sum_{k=1}^{n} (4k^2 + 4k + 4)
a2n+1=4+4k=1n(k2+k+1)a_{2n+1} = 4 + 4 \sum_{k=1}^{n} (k^2 + k + 1)
a2n+1=4+4(n(n+1)(2n+1)6+n(n+1)2+n)a_{2n+1} = 4 + 4 (\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} + n)
a2n+1=4+4n((n+1)(2n+1)6+n+12+1)a_{2n+1} = 4 + 4n (\frac{(n+1)(2n+1)}{6} + \frac{n+1}{2} + 1)
a2n+1=4+23n(n+1)(2n+1)+2n(n+1)+4na_{2n+1} = 4 + \frac{2}{3} n(n+1)(2n+1) + 2n(n+1) + 4n
a2n+1=23n(2n2+3n+1)+2n2+2n+4n+4a_{2n+1} = \frac{2}{3} n (2n^2 + 3n + 1) + 2n^2 + 2n + 4n + 4
a2n+1=43n3+2n2+23n+2n2+6n+4a_{2n+1} = \frac{4}{3} n^3 + 2n^2 + \frac{2}{3} n + 2n^2 + 6n + 4
a2n+1=43n3+4n2+203n+4a_{2n+1} = \frac{4}{3} n^3 + 4n^2 + \frac{20}{3} n + 4
a2n=14a2n1+n2a_{2n} = \frac{1}{4} a_{2n-1} + n^2
a2n=14(43(n1)3+4(n1)2+203(n1)+4)+n2a_{2n} = \frac{1}{4} (\frac{4}{3} (n-1)^3 + 4(n-1)^2 + \frac{20}{3} (n-1) + 4) + n^2
a2n=13(n1)3+(n1)2+53(n1)+1+n2a_{2n} = \frac{1}{3} (n-1)^3 + (n-1)^2 + \frac{5}{3} (n-1) + 1 + n^2
a2n=13(n33n2+3n1)+n22n+1+53n53+1+n2a_{2n} = \frac{1}{3} (n^3 - 3n^2 + 3n - 1) + n^2 - 2n + 1 + \frac{5}{3} n - \frac{5}{3} + 1 + n^2
a2n=13n3n2+n13+2n22n+1+53n53+na_{2n} = \frac{1}{3} n^3 - n^2 + n - \frac{1}{3} + 2n^2 - 2n + 1 + \frac{5}{3} n - \frac{5}{3} + n
a2n=13n3+n2+23n13+153a_{2n} = \frac{1}{3} n^3 + n^2 + \frac{2}{3} n - \frac{1}{3} + 1 - \frac{5}{3}
a2n=13n3+n2+23n33=13n3+n2+23n1323+11=13n3+n2+23n13a_{2n} = \frac{1}{3} n^3 + n^2 + \frac{2}{3} n - \frac{3}{3} = \frac{1}{3}n^3+n^2+\frac{2}{3}n - \frac{1}{3}-\frac{2}{3} + 1 -1 = \frac{1}{3} n^3 + n^2 + \frac{2}{3} n - \frac{1}{3}
a2n=13n3+n2+23n131=n3+3n2+2n13a_{2n} = \frac{1}{3} n^3 + n^2 + \frac{2}{3} n - \frac{1}{3} - 1 = \frac{n^3+3n^2+2n-1}{3}
(3) {an}\{a_n\} の項で 4 の倍数でないものを、n の値が小さいものから4項並べる。
a1=4a_1 = 4
a2=2a_2 = 2
a3=16a_3 = 16
a4=8a_4 = 8
a5=44a_5 = 44
a6=1333+32+23313=9+9+213=2023a_6 = \frac{1}{3} 3^3 + 3^2 + \frac{2}{3}3 - \frac{1}{3} = 9+9+2 - \frac{1}{3} = 20 \frac{2}{3} これは整数でないのでおかしい。
a6=14a5+32=14(44)+9=11+9=20a_6 = \frac{1}{4} a_5 + 3^2 = \frac{1}{4} (44) + 9 = 11+9 = 20
a7=4a6+4(3+1)=4(20)+16=80+16=96a_7 = 4a_6 + 4(3+1) = 4(20) + 16 = 80 + 16 = 96
a8=14a7+42=14(96)+16=24+16=40a_8 = \frac{1}{4} a_7 + 4^2 = \frac{1}{4} (96) + 16 = 24 + 16 = 40
a9=4a8+4(4+1)=4(40)+20=160+20=180a_9 = 4 a_8 + 4(4+1) = 4(40) + 20 = 160 + 20 = 180
a1=4a_1 = 4, a2=2a_2 = 2, a3=16a_3 = 16, a4=8a_4 = 8, a5=44a_5 = 44, a6=20a_6 = 20, a7=96a_7 = 96, a8=40a_8 = 40, a9=180a_9 = 180
4 の倍数でないものは a2=2a_2 = 2
a1=4a_1=4, a2=2a_2 = 2, a3=16a_3 = 16, a4=8a_4 = 8, a5=44a_5 = 44, a6=20a_6=20
4 の倍数でないのは、2, 44, 20の順。
a7=96a_7 = 96
a8=40a_8 = 40
a9=180a_9 = 180
a10=14a9+52=14(180)+25=45+25=70a_{10} = \frac{1}{4}a_9 + 5^2 = \frac{1}{4}(180) + 25 = 45+25 = 70
よって4の倍数でないのは、2, 44, 20, 70

3. 最終的な答え

(1) a2=2a_2 = 2, a3=16a_3 = 16, a4=8a_4 = 8, a5=44a_5 = 44
(2) a2n=13n3+n2+23na_{2n} = \frac{1}{3} n^3 + n^2 + \frac{2}{3} n, a2n+1=43n3+4n2+203n+4a_{2n+1} = \frac{4}{3} n^3 + 4n^2 + \frac{20}{3} n + 4
(3) a2,a5,a6,a10a_2, a_5, a_6, a_{10} よって、2, 44, 20, 70