三角形ABCにおいて、$BC=CD=DE=EA$、$\angle ACB = 108^\circ$ のとき、$\angle BAC$の大きさを求める問題です。幾何学三角形角度二等辺三角形図形2025/8/111. 問題の内容三角形ABCにおいて、BC=CD=DE=EABC=CD=DE=EABC=CD=DE=EA、∠ACB=108∘\angle ACB = 108^\circ∠ACB=108∘ のとき、∠BAC\angle BAC∠BACの大きさを求める問題です。2. 解き方の手順まず、△BCD\triangle BCD△BCD, △CDE\triangle CDE△CDE, △DEA\triangle DEA△DEA はそれぞれ二等辺三角形です。∠CBD=∠CDB=x\angle CBD = \angle CDB = x∠CBD=∠CDB=x とおくと、∠BCD=180∘−2x\angle BCD = 180^\circ - 2x∠BCD=180∘−2x∠DCE=∠DEC=y\angle DCE = \angle DEC = y∠DCE=∠DEC=y とおくと、∠CDE=180∘−2y\angle CDE = 180^\circ - 2y∠CDE=180∘−2y∠DAE=∠ADE=z\angle DAE = \angle ADE = z∠DAE=∠ADE=z とおくと、∠DEA=180∘−2z\angle DEA = 180^\circ - 2z∠DEA=180∘−2z∠ACB=108∘\angle ACB = 108^\circ∠ACB=108∘ なので、∠ACE=108∘−∠BCD=108∘−(180∘−2x)=2x−72∘\angle ACE = 108^\circ - \angle BCD = 108^\circ - (180^\circ - 2x) = 2x - 72^\circ∠ACE=108∘−∠BCD=108∘−(180∘−2x)=2x−72∘したがって、∠ACE=2x−72∘=y\angle ACE = 2x - 72^\circ = y∠ACE=2x−72∘=yまた、∠CDA=∠CDB+∠ADE=x+z\angle CDA = \angle CDB + \angle ADE = x + z∠CDA=∠CDB+∠ADE=x+z∠EDC=180∘−2y\angle EDC = 180^\circ - 2y∠EDC=180∘−2y なので、180∘−2y+180∘−2x+180∘−2z=360∘180^\circ - 2y + 180^\circ - 2x + 180^\circ - 2z = 360^\circ180∘−2y+180∘−2x+180∘−2z=360∘180∘−2y+x+z=∠ADC180^\circ - 2y + x + z = \angle ADC180∘−2y+x+z=∠ADC三角形ABCの内角の和は180°なので、∠BAC+∠ABC+∠ACB=180∘\angle BAC + \angle ABC + \angle ACB = 180^\circ∠BAC+∠ABC+∠ACB=180∘∠ABC=x+y\angle ABC = x + y∠ABC=x+y三角形CDEにおいて、∠DCE+∠DEC+∠EDC=180∘\angle DCE + \angle DEC + \angle EDC = 180^\circ∠DCE+∠DEC+∠EDC=180∘y+y+∠CDE=180∘y + y + \angle CDE = 180^\circy+y+∠CDE=180∘2y+180∘−2y=180∘2y + 180^\circ - 2y = 180^\circ2y+180∘−2y=180∘∠ACB=108∘\angle ACB = 108^\circ∠ACB=108∘ より、∠BCD+∠DCE=108∘\angle BCD + \angle DCE = 108^\circ∠BCD+∠DCE=108∘180∘−2x+y=108∘180^\circ - 2x + y = 108^\circ180∘−2x+y=108∘y=2x−72∘y = 2x - 72^\circy=2x−72∘∠CDE+∠EDA=∠CDA\angle CDE + \angle EDA = \angle CDA∠CDE+∠EDA=∠CDA180∘−2y+z=∠CDA180^\circ - 2y + z = \angle CDA180∘−2y+z=∠CDA∠DEA=180∘−2z\angle DEA = 180^\circ - 2z∠DEA=180∘−2z∠DEA+∠DEC=∠AEC\angle DEA + \angle DEC = \angle AEC∠DEA+∠DEC=∠AEC∠BCA=108∘\angle BCA = 108^\circ∠BCA=108∘∠BAC=A\angle BAC = A∠BAC=A∠ABC=B\angle ABC = B∠ABC=BA+B+108∘=180∘A + B + 108^\circ = 180^\circA+B+108∘=180∘A+B=72∘A + B = 72^\circA+B=72∘BC=CD=DE=EABC = CD = DE = EABC=CD=DE=EA∠CDB=∠CBD\angle CDB = \angle CBD∠CDB=∠CBD∠DEC=∠DCE\angle DEC = \angle DCE∠DEC=∠DCE∠EAD=∠EDA\angle EAD = \angle EDA∠EAD=∠EDA∠ACB=108∘\angle ACB = 108^\circ∠ACB=108∘ より、∠CDB+∠DEC+∠EAD=180∘−108∘2+108∘−∠BAC\angle CDB + \angle DEC + \angle EAD = \frac{180^\circ - 108^\circ}{2} + 108^\circ - \angle BAC∠CDB+∠DEC+∠EAD=2180∘−108∘+108∘−∠BAC∠BAC=36∘−3x2\angle BAC = 36^\circ - \frac{3x}{2}∠BAC=36∘−23x5x=180−A5x = 180 - A5x=180−Ax+(2x−72)+A=72x + (2x-72) + A = 72x+(2x−72)+A=723x−72+A=723x - 72 + A = 723x−72+A=723x+A=1443x + A = 1443x+A=144∠BAC=36∘\angle BAC = 36^\circ∠BAC=36∘3. 最終的な答え∠BAC=36∘\angle BAC = 36^\circ∠BAC=36∘