$x = \frac{2}{\sqrt{8}+2}$、 $y = \frac{\sqrt{8}+2}{4}$のとき、$x+2y$の値を求めよ。代数学式の計算有理化平方根2025/8/111. 問題の内容x=28+2x = \frac{2}{\sqrt{8}+2}x=8+22、 y=8+24y = \frac{\sqrt{8}+2}{4}y=48+2のとき、x+2yx+2yx+2yの値を求めよ。2. 解き方の手順まず、xxxを計算します。8=22\sqrt{8} = 2\sqrt{2}8=22なので、x=222+2=12+1x = \frac{2}{2\sqrt{2}+2} = \frac{1}{\sqrt{2}+1}x=22+22=2+11分母を有理化するために、分子と分母に2−1\sqrt{2}-12−1をかけます。x=12+1⋅2−12−1=2−1(2)2−12=2−12−1=2−1x = \frac{1}{\sqrt{2}+1} \cdot \frac{\sqrt{2}-1}{\sqrt{2}-1} = \frac{\sqrt{2}-1}{(\sqrt{2})^2 - 1^2} = \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1x=2+11⋅2−12−1=(2)2−122−1=2−12−1=2−1次に、yyyを計算します。8=22\sqrt{8} = 2\sqrt{2}8=22なので、y=22+24=2+12y = \frac{2\sqrt{2}+2}{4} = \frac{\sqrt{2}+1}{2}y=422+2=22+1x+2yx+2yx+2yを計算します。x+2y=(2−1)+2(2+12)=2−1+2+1=22x+2y = (\sqrt{2}-1) + 2\left(\frac{\sqrt{2}+1}{2}\right) = \sqrt{2}-1 + \sqrt{2}+1 = 2\sqrt{2}x+2y=(2−1)+2(22+1)=2−1+2+1=223. 最終的な答え222\sqrt{2}22