定積分 $S = \int_{\alpha}^{\beta} (x - \alpha)(x - \beta) dx$ を計算し、その結果が $S = -\frac{1}{6}(\beta - \alpha)^3$ となることを示す問題です。解析学定積分積分計算2025/8/121. 問題の内容定積分 S=∫αβ(x−α)(x−β)dxS = \int_{\alpha}^{\beta} (x - \alpha)(x - \beta) dxS=∫αβ(x−α)(x−β)dx を計算し、その結果が S=−16(β−α)3S = -\frac{1}{6}(\beta - \alpha)^3S=−61(β−α)3 となることを示す問題です。2. 解き方の手順まず、積分の中身を展開します。(x−α)(x−β)=x2−(α+β)x+αβ(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta(x−α)(x−β)=x2−(α+β)x+αβ次に、この式を α\alphaα から β\betaβ まで積分します。∫αβ(x2−(α+β)x+αβ)dx=[13x3−12(α+β)x2+αβx]αβ\int_{\alpha}^{\beta} (x^2 - (\alpha + \beta)x + \alpha\beta) dx = \left[ \frac{1}{3}x^3 - \frac{1}{2}(\alpha + \beta)x^2 + \alpha\beta x \right]_{\alpha}^{\beta}∫αβ(x2−(α+β)x+αβ)dx=[31x3−21(α+β)x2+αβx]αβ積分範囲を代入します。=(13β3−12(α+β)β2+αβ2)−(13α3−12(α+β)α2+α2β)= \left( \frac{1}{3}\beta^3 - \frac{1}{2}(\alpha + \beta)\beta^2 + \alpha\beta^2 \right) - \left( \frac{1}{3}\alpha^3 - \frac{1}{2}(\alpha + \beta)\alpha^2 + \alpha^2\beta \right)=(31β3−21(α+β)β2+αβ2)−(31α3−21(α+β)α2+α2β)=13(β3−α3)−12(αβ2+β3−α3−α2β)+αβ(β−α)= \frac{1}{3}(\beta^3 - \alpha^3) - \frac{1}{2}(\alpha\beta^2 + \beta^3 - \alpha^3 - \alpha^2\beta) + \alpha\beta(\beta - \alpha)=31(β3−α3)−21(αβ2+β3−α3−α2β)+αβ(β−α)=13(β3−α3)−12β3+12α3−12αβ2+12α2β+αβ2−α2β= \frac{1}{3}(\beta^3 - \alpha^3) - \frac{1}{2}\beta^3 + \frac{1}{2}\alpha^3 - \frac{1}{2}\alpha\beta^2 + \frac{1}{2}\alpha^2\beta + \alpha\beta^2 - \alpha^2\beta=31(β3−α3)−21β3+21α3−21αβ2+21α2β+αβ2−α2β=(13−12)(β3−α3)+(α−12α)β2+(12α−α)αβ= (\frac{1}{3} - \frac{1}{2})(\beta^3 - \alpha^3) + (\alpha - \frac{1}{2}\alpha)\beta^2 + (\frac{1}{2}\alpha - \alpha)\alpha\beta=(31−21)(β3−α3)+(α−21α)β2+(21α−α)αβ=−16(β3−α3)+12αβ2−12α2β= -\frac{1}{6}(\beta^3 - \alpha^3) + \frac{1}{2}\alpha\beta^2 - \frac{1}{2}\alpha^2\beta=−61(β3−α3)+21αβ2−21α2β=−16(β3−α3)−12αβ(α−β)= -\frac{1}{6}(\beta^3 - \alpha^3) - \frac{1}{2}\alpha\beta(\alpha-\beta)=−61(β3−α3)−21αβ(α−β)ここで、β3−α3=(β−α)(β2+αβ+α2)\beta^3 - \alpha^3 = (\beta - \alpha)(\beta^2 + \alpha\beta + \alpha^2)β3−α3=(β−α)(β2+αβ+α2) なので、=−16(β−α)(β2+αβ+α2)−12αβ(α−β)= -\frac{1}{6}(\beta - \alpha)(\beta^2 + \alpha\beta + \alpha^2) - \frac{1}{2}\alpha\beta(\alpha-\beta)=−61(β−α)(β2+αβ+α2)−21αβ(α−β)=−16(β−α)(β2+αβ+α2)+12αβ(β−α)= -\frac{1}{6}(\beta - \alpha)(\beta^2 + \alpha\beta + \alpha^2) + \frac{1}{2}\alpha\beta(\beta-\alpha)=−61(β−α)(β2+αβ+α2)+21αβ(β−α)=(β−α)[−16(β2+αβ+α2)+12αβ]= (\beta - \alpha) \left[ -\frac{1}{6}(\beta^2 + \alpha\beta + \alpha^2) + \frac{1}{2}\alpha\beta \right]=(β−α)[−61(β2+αβ+α2)+21αβ]=(β−α)[−16β2−16αβ−16α2+36αβ]= (\beta - \alpha) \left[ -\frac{1}{6}\beta^2 - \frac{1}{6}\alpha\beta - \frac{1}{6}\alpha^2 + \frac{3}{6}\alpha\beta \right]=(β−α)[−61β2−61αβ−61α2+63αβ]=(β−α)[−16β2+26αβ−16α2]= (\beta - \alpha) \left[ -\frac{1}{6}\beta^2 + \frac{2}{6}\alpha\beta - \frac{1}{6}\alpha^2 \right]=(β−α)[−61β2+62αβ−61α2]=−16(β−α)(β2−2αβ+α2)= -\frac{1}{6}(\beta - \alpha)(\beta^2 - 2\alpha\beta + \alpha^2)=−61(β−α)(β2−2αβ+α2)=−16(β−α)(β−α)2= -\frac{1}{6}(\beta - \alpha)(\beta - \alpha)^2=−61(β−α)(β−α)2=−16(β−α)3= -\frac{1}{6}(\beta - \alpha)^3=−61(β−α)33. 最終的な答えS=−16(β−α)3S = -\frac{1}{6}(\beta - \alpha)^3S=−61(β−α)3