定積分 $S = \int_{\alpha}^{\beta} (x-\alpha)(x-\beta) dx$ を計算する問題です。解析学定積分積分計算2025/8/121. 問題の内容定積分 S=∫αβ(x−α)(x−β)dxS = \int_{\alpha}^{\beta} (x-\alpha)(x-\beta) dxS=∫αβ(x−α)(x−β)dx を計算する問題です。2. 解き方の手順まず、積分の中身を展開します。(x−α)(x−β)=x2−(α+β)x+αβ(x-\alpha)(x-\beta) = x^2 - (\alpha+\beta)x + \alpha\beta(x−α)(x−β)=x2−(α+β)x+αβ次に、この式をα\alphaαからβ\betaβまで積分します。∫αβ(x2−(α+β)x+αβ)dx=[13x3−12(α+β)x2+αβx]αβ\int_{\alpha}^{\beta} (x^2 - (\alpha+\beta)x + \alpha\beta) dx = [\frac{1}{3}x^3 - \frac{1}{2}(\alpha+\beta)x^2 + \alpha\beta x]_{\alpha}^{\beta}∫αβ(x2−(α+β)x+αβ)dx=[31x3−21(α+β)x2+αβx]αβここで、積分範囲の端点を代入します。=(13β3−12(α+β)β2+αβ2)−(13α3−12(α+β)α2+α2β)= (\frac{1}{3}\beta^3 - \frac{1}{2}(\alpha+\beta)\beta^2 + \alpha\beta^2) - (\frac{1}{3}\alpha^3 - \frac{1}{2}(\alpha+\beta)\alpha^2 + \alpha^2\beta)=(31β3−21(α+β)β2+αβ2)−(31α3−21(α+β)α2+α2β)=13(β3−α3)−12(αβ2+β3−α3−α2β)+αβ(β−α)= \frac{1}{3}(\beta^3 - \alpha^3) - \frac{1}{2}(\alpha\beta^2 + \beta^3 - \alpha^3 - \alpha^2\beta) + \alpha\beta(\beta - \alpha)=31(β3−α3)−21(αβ2+β3−α3−α2β)+αβ(β−α)=13(β3−α3)−12αβ(β−α)−12(β3−α3)+αβ(β−α)= \frac{1}{3}(\beta^3 - \alpha^3) - \frac{1}{2}\alpha\beta(\beta - \alpha) - \frac{1}{2}(\beta^3 - \alpha^3) + \alpha\beta(\beta - \alpha)=31(β3−α3)−21αβ(β−α)−21(β3−α3)+αβ(β−α)=−16(β3−α3)+12αβ(β−α)= -\frac{1}{6}(\beta^3 - \alpha^3) + \frac{1}{2}\alpha\beta(\beta - \alpha)=−61(β3−α3)+21αβ(β−α)=−16(β−α)(β2+αβ+α2)+12αβ(β−α)= -\frac{1}{6}(\beta-\alpha)(\beta^2 + \alpha\beta + \alpha^2) + \frac{1}{2}\alpha\beta(\beta - \alpha)=−61(β−α)(β2+αβ+α2)+21αβ(β−α)=−16(β−α)(β2+αβ+α2−3αβ)= -\frac{1}{6}(\beta-\alpha)(\beta^2 + \alpha\beta + \alpha^2 - 3\alpha\beta)=−61(β−α)(β2+αβ+α2−3αβ)=−16(β−α)(β2−2αβ+α2)= -\frac{1}{6}(\beta-\alpha)(\beta^2 - 2\alpha\beta + \alpha^2)=−61(β−α)(β2−2αβ+α2)=−16(β−α)(β−α)2= -\frac{1}{6}(\beta-\alpha)(\beta-\alpha)^2=−61(β−α)(β−α)2=−16(β−α)3= -\frac{1}{6}(\beta-\alpha)^3=−61(β−α)33. 最終的な答えS=−16(β−α)3S = -\frac{1}{6}(\beta-\alpha)^3S=−61(β−α)3