$\frac{a}{b} = \frac{c}{d}$ のとき、$\frac{a-c}{b-d} = \frac{a+2c}{b+2d}$ を証明せよ。代数学比例式分数式証明2025/8/131. 問題の内容ab=cd\frac{a}{b} = \frac{c}{d}ba=dc のとき、a−cb−d=a+2cb+2d\frac{a-c}{b-d} = \frac{a+2c}{b+2d}b−da−c=b+2da+2c を証明せよ。2. 解き方の手順まず、ab=cd=k\frac{a}{b} = \frac{c}{d} = kba=dc=k とおく。このとき、a=bka = bka=bk 、c=dkc = dkc=dk となる。(左辺) = a−cb−d=bk−dkb−d=k(b−d)b−d=k\frac{a-c}{b-d} = \frac{bk - dk}{b-d} = \frac{k(b-d)}{b-d} = kb−da−c=b−dbk−dk=b−dk(b−d)=k(右辺) = a+2cb+2d=bk+2dkb+2d=k(b+2d)b+2d=k\frac{a+2c}{b+2d} = \frac{bk + 2dk}{b+2d} = \frac{k(b+2d)}{b+2d} = kb+2da+2c=b+2dbk+2dk=b+2dk(b+2d)=kよって、a−cb−d=a+2cb+2d\frac{a-c}{b-d} = \frac{a+2c}{b+2d}b−da−c=b+2da+2c が成り立つ。3. 最終的な答えス:bkbkbkセ:dkdkdkソ:aaaタ:cccチ:kkkツ:aaaテ:cccト:kkk