与えられた連立方程式を代入法で解く問題です。 連立方程式は以下の通りです。 $3a - b = -15$ ...(1) $a + b = -1$ ...(2)

代数学連立方程式代入法一次方程式
2025/8/14

1. 問題の内容

与えられた連立方程式を代入法で解く問題です。
連立方程式は以下の通りです。
3ab=153a - b = -15 ...(1)
a+b=1a + b = -1 ...(2)

2. 解き方の手順

(2)の式を変形して、bbaa で表します。
b=a1b = -a - 1 ...(3)
(3)の式を(1)の式に代入します。
3a(a1)=153a - (-a - 1) = -15
3a+a+1=153a + a + 1 = -15
4a+1=154a + 1 = -15
4a=164a = -16
a=4a = -4
a=4a = -4 を(3)の式に代入して、bb を求めます。
b=(4)1b = -(-4) - 1
b=41b = 4 - 1
b=3b = 3

3. 最終的な答え

a=4a = -4
b=3b = 3

「代数学」の関連問題

次の連立方程式を代入法で解きます。 $ \begin{cases} 6x - 3y = 0 & \text{...(1)} \\ -x + 4y = 35 & \text{...(2)} \end{...

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式 $\begin{cases} -4x + y = 48 \\ 2x + 5y = 20 \end{cases}$ を代入法で解く。

連立方程式代入法線形代数
2025/8/14

与えられた連立方程式 $x - 2y = 13$ (1) $x - y = 10$ (2) を代入法で解く。

連立方程式代入法方程式の解
2025/8/14

与えられた連立方程式を代入法で解く問題です。 連立方程式は以下の通りです。 $7x + 2y = 22$ ...(1) $y - 5x = -23$ ...(2)

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式を代入法を用いて解く問題です。 連立方程式は以下の通りです。 $2x + 3y = 2$ ...(1) $y + x = 5$ ...(2)

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式 $x - 3y = 5$ (1) $3x - 2y = 1$ (2) を代入法で解く。

連立方程式代入法一次方程式
2025/8/14

以下の連立方程式を代入法で解きます。 $x - y = 4$ ...(1) $2x + 3y = 3$ ...(2)

連立方程式代入法方程式
2025/8/14

与えられた連立方程式 $x - y = 2$ $x + 3y = 14$ を代入法で解く。

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式を代入法で解く問題です。連立方程式は以下の通りです。 $x - y = -3$ ...(1) $x + 2y = 9$ ...(2)

連立方程式代入法一次方程式
2025/8/14

与えられた式 $4x + 3y - z = 12$ を $x$ について解く問題です。つまり、$x = $ の形に変形します。

一次方程式式の変形解の公式
2025/8/14