与えられた連立方程式 $\begin{cases} -4x + y = 48 \\ 2x + 5y = 20 \end{cases}$ を代入法で解く。

代数学連立方程式代入法線形代数
2025/8/14

1. 問題の内容

与えられた連立方程式
$\begin{cases}
-4x + y = 48 \\
2x + 5y = 20
\end{cases}$
を代入法で解く。

2. 解き方の手順

まず、1番目の式から yy について解く。
y=4x+48y = 4x + 48
次に、この結果を2番目の式に代入する。
2x+5(4x+48)=202x + 5(4x + 48) = 20
2x+20x+240=202x + 20x + 240 = 20
22x=22022x = -220
x=10x = -10
求めた xx の値を、y=4x+48y = 4x + 48 に代入する。
y=4(10)+48y = 4(-10) + 48
y=40+48y = -40 + 48
y=8y = 8

3. 最終的な答え

x=10x = -10, y=8y = 8

「代数学」の関連問題

次の連立方程式を代入法で解きます。 $ \begin{cases} 6x - 3y = 0 & \text{...(1)} \\ -x + 4y = 35 & \text{...(2)} \end{...

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式を代入法で解く問題です。 連立方程式は以下の通りです。 $3a - b = -15$ ...(1) $a + b = -1$ ...(2)

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式 $x - 2y = 13$ (1) $x - y = 10$ (2) を代入法で解く。

連立方程式代入法方程式の解
2025/8/14

与えられた連立方程式を代入法で解く問題です。 連立方程式は以下の通りです。 $7x + 2y = 22$ ...(1) $y - 5x = -23$ ...(2)

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式を代入法を用いて解く問題です。 連立方程式は以下の通りです。 $2x + 3y = 2$ ...(1) $y + x = 5$ ...(2)

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式 $x - 3y = 5$ (1) $3x - 2y = 1$ (2) を代入法で解く。

連立方程式代入法一次方程式
2025/8/14

以下の連立方程式を代入法で解きます。 $x - y = 4$ ...(1) $2x + 3y = 3$ ...(2)

連立方程式代入法方程式
2025/8/14

与えられた連立方程式 $x - y = 2$ $x + 3y = 14$ を代入法で解く。

連立方程式代入法一次方程式
2025/8/14

与えられた連立方程式を代入法で解く問題です。連立方程式は以下の通りです。 $x - y = -3$ ...(1) $x + 2y = 9$ ...(2)

連立方程式代入法一次方程式
2025/8/14

与えられた式 $4x + 3y - z = 12$ を $x$ について解く問題です。つまり、$x = $ の形に変形します。

一次方程式式の変形解の公式
2025/8/14