$\int \log(x^2+1) \, dx$ を計算する。解析学積分部分積分対数関数arctan関数2025/8/141. 問題の内容∫log(x2+1) dx\int \log(x^2+1) \, dx∫log(x2+1)dx を計算する。2. 解き方の手順部分積分を用いて解く。∫u dv=uv−∫v du\int u \, dv = uv - \int v \, du∫udv=uv−∫vduここで、u=log(x2+1)u = \log(x^2+1)u=log(x2+1) 、dv=dxdv = dxdv=dx とおく。すると、du=2xx2+1 dxdu = \frac{2x}{x^2+1} \, dxdu=x2+12xdxv=xv = xv=xしたがって、∫log(x2+1) dx=xlog(x2+1)−∫2x2x2+1 dx\int \log(x^2+1) \, dx = x\log(x^2+1) - \int \frac{2x^2}{x^2+1} \, dx∫log(x2+1)dx=xlog(x2+1)−∫x2+12x2dxここで、∫2x2x2+1 dx=∫2(x2+1)−2x2+1 dx=∫(2−2x2+1) dx=2x−2arctan(x)+C\int \frac{2x^2}{x^2+1} \, dx = \int \frac{2(x^2+1) - 2}{x^2+1} \, dx = \int \left( 2 - \frac{2}{x^2+1} \right) \, dx = 2x - 2\arctan(x) + C∫x2+12x2dx=∫x2+12(x2+1)−2dx=∫(2−x2+12)dx=2x−2arctan(x)+Cしたがって、∫log(x2+1) dx=xlog(x2+1)−(2x−2arctan(x))+C=xlog(x2+1)−2x+2arctan(x)+C\int \log(x^2+1) \, dx = x\log(x^2+1) - (2x - 2\arctan(x)) + C = x\log(x^2+1) - 2x + 2\arctan(x) + C∫log(x2+1)dx=xlog(x2+1)−(2x−2arctan(x))+C=xlog(x2+1)−2x+2arctan(x)+C3. 最終的な答えxlog(x2+1)−2x+2arctan(x)+Cx\log(x^2+1) - 2x + 2\arctan(x) + Cxlog(x2+1)−2x+2arctan(x)+C