与えられた式 $(x+3)(y+2)$ を展開する。

代数学展開分配法則多項式
2025/8/14

1. 問題の内容

与えられた式 (x+3)(y+2)(x+3)(y+2) を展開する。

2. 解き方の手順

分配法則を用いて式を展開します。
まず、xx(y+2)(y+2)にかけ、33(y+2)(y+2)にかけます。
x(y+2)+3(y+2)x(y+2) + 3(y+2)
次に、それぞれの項を展開します。
xy+2x+3y+6xy + 2x + 3y + 6
これ以上の同類項はないので、これが最終的な答えです。

3. 最終的な答え

xy+2x+3y+6xy + 2x + 3y + 6

「代数学」の関連問題

問題は、方程式 $x^{\frac{1}{3}} + y^{\frac{1}{3}} = 1$ を解くことです。ただし、解くといっても、$x$ と $y$ の関係式を求めることになります。

方程式累乗根式の変形
2025/8/14

与えられた式 $(x+1)(x^2+x+1)(x^2-x+1)^2$ を展開し、整理せよ。

多項式の展開因数分解式変形
2025/8/14

$0 \le x \le a+3$ ($a > 0$) とする。 関数 $f(x) = x^2 - 4x + 3a^2 - 6a + 2$ の最小値が 7 であるとき、$a$ の値を求めよ。また、その...

二次関数最大値最小値場合分け
2025/8/14

家から図書館まで、自転車(分速300m)で行くのとバイク(分速450m)で行くのでは、かかる時間が3分違う。家から図書館までの道のりを求める。

文章問題一次方程式速さ距離時間
2025/8/14

問題文より、$0 \le x \le a+3$ ($a > 0$) とする。関数 $f(x)$ の最小値が 7 であるとき、$a$ の値と $f(x)$ の最大値を求めよ。ただし、$f(x)$ は与え...

二次関数最大値最小値場合分け平方完成
2025/8/14

$x + 2y - z = 0$ と $3x - y + z = 1$ を満たすすべての $x, y, z$ に対して、$ax^2 + by^2 + cz^2 = 1$ が成り立つように、定数 $a,...

連立方程式二次形式線形代数変数変換
2025/8/14

問題1:$(x^2 + 2x - 3)^6$ の展開式における $x^5$ の係数を求めよ。 問題2:$\left(x^2 - \frac{1}{3x}\right)^{30}$ の展開式における $...

多項定理二項定理展開係数
2025/8/14

グラフと$y$軸との交点の$y$座標を$Y$とする。$a$が変化するとき、$Y$の最小値を求める問題です。「ウエ」とあるので、答えは2桁の数値になります。

二次関数グラフ最小値平方完成y軸との交点
2025/8/14

関数 $y = |3x + 2|$ のグラフを描く問題です。

絶対値グラフ関数一次関数
2025/8/14

2次関数 $f(x) = x^2 - 4x + 3a^2 - 6a + 2$ のグラフの頂点の座標を求める問題です。頂点の $x$ 座標をア、頂点の $y$ 座標を $3a^2 - 6a -$ イ と...

二次関数平方完成頂点数式処理
2025/8/14