複素数の等式 $5x - 4i = 5 + 2yi$ を満たす実数 $x$ と $y$ を求める問題です。

代数学複素数等式実部虚部
2025/8/14

1. 問題の内容

複素数の等式 5x4i=5+2yi5x - 4i = 5 + 2yi を満たす実数 xxyy を求める問題です。

2. 解き方の手順

複素数の等式では、実部と虚部がそれぞれ等しくなければなりません。
したがって、与えられた等式から、以下の2つの式が得られます。
* 実部について: 5x=55x = 5
* 虚部について: 4=2y-4 = 2y
まず、実部の式 5x=55x = 5 から xx を求めます。
両辺を5で割ると、
x=55=1x = \frac{5}{5} = 1
次に、虚部の式 4=2y-4 = 2y から yy を求めます。
両辺を2で割ると、
y=42=2y = \frac{-4}{2} = -2

3. 最終的な答え

x=1x = 1
y=2y = -2

「代数学」の関連問題

次の方程式を解く。 (1) $x^4 - 7x^2 + 12 = 0$ (2) $x^3 - 6x^2 + 11x - 6 = 0$ (3) $x^3 - x + 6 = 0$

方程式多項式因数分解複素数
2025/8/14

項数 $m$ の2つの等差数列 $\{a_n\}$ と $\{b_n\}$ があります。 $\{a_n\} = 1, 2, 3, 4, \dots, m-2, m-1, m$ $\{b_n\} = m...

数列最大値等差数列和の公式平方完成
2025/8/14

与えられた整式を、指定された一次式で割ったときの余りを求める問題です。余剰の定理を使います。

整式剰余の定理多項式
2025/8/14

問題文から、$a_n$ は初項1、公差1、項数 $m$ の等差数列であることがわかります。しかし、$b_n$については情報が不足しており、問題を解くことができません。問題を特定するためには、$b_n$...

数列等差数列問題分析
2025/8/14

多項式 $P(x) = 3x^2 + 2x - 1$ が与えられたとき、$P(0)$ と $P(-1)$ の値を求める問題です。

多項式関数の値代入
2025/8/14

与えられた式は $x^3 + x^2 - 3x - 1 = B(x-1) - 3x + 1$ です。この式から $B$ を求めることが問題です。

多項式因数分解式の変形
2025/8/14

数列 $\{a_n\}$ の初項 $a_1$ から第 $n$ 項 $a_n$ までの和 $S_n$ が $S_n = n^3 + 3n^2 + 2n$ であるとする。 (1) $a_1, a_2$ を...

数列級数部分分数分解
2025/8/14

与えられた漸化式で定義される数列 $\{a_n\}$ の一般項を求めます。 (1) $a_1 = 4, \ 2a_{n+1} = a_n \ (n = 1, 2, ...)$ (2) $a_1 = 1...

数列漸化式等比数列階差数列
2025/8/14

与えられた式 $A = (2+1)(x^2 - 3x - 2) + 4$ を簡略化します。

式の簡略化多項式分配法則
2025/8/14

## 問題の回答

数列漸化式一般項等比数列階差数列
2025/8/14