複素数単位 $i$ を用いて表された数 $1/i^3$ を計算し、簡単な形で表す問題です。

代数学複素数虚数単位計算累乗
2025/8/14

1. 問題の内容

複素数単位 ii を用いて表された数 1/i31/i^3 を計算し、簡単な形で表す問題です。

2. 解き方の手順

まず、ii の累乗について考えます。
ii は虚数単位であり、i2=1i^2 = -1 という性質を持ちます。
したがって、i3i^3 は以下のように計算できます。
i3=i2i=1i=ii^3 = i^2 \cdot i = -1 \cdot i = -i
よって、1/i31/i^31/(i)1/(-i) となります。
この分数を簡単にするために、分母と分子に ii を掛けます。
1i=1iii=ii2=i(1)=i1=i\frac{1}{-i} = \frac{1 \cdot i}{-i \cdot i} = \frac{i}{-i^2} = \frac{i}{-(-1)} = \frac{i}{1} = i

3. 最終的な答え

ii

「代数学」の関連問題

一次方程式 $0 = \frac{2}{3}x - 1$ を解いて、$x$ の値を求める問題です。途中式に $-\frac{2}{3}x = -1$ があります。

一次方程式方程式解法
2025/8/14

次の方程式を解く。 (1) $x^4 - 7x^2 + 12 = 0$ (2) $x^3 - 6x^2 + 11x - 6 = 0$ (3) $x^3 - x + 6 = 0$

方程式多項式因数分解複素数
2025/8/14

項数 $m$ の2つの等差数列 $\{a_n\}$ と $\{b_n\}$ があります。 $\{a_n\} = 1, 2, 3, 4, \dots, m-2, m-1, m$ $\{b_n\} = m...

数列最大値等差数列和の公式平方完成
2025/8/14

与えられた整式を、指定された一次式で割ったときの余りを求める問題です。余剰の定理を使います。

整式剰余の定理多項式
2025/8/14

問題文から、$a_n$ は初項1、公差1、項数 $m$ の等差数列であることがわかります。しかし、$b_n$については情報が不足しており、問題を解くことができません。問題を特定するためには、$b_n$...

数列等差数列問題分析
2025/8/14

多項式 $P(x) = 3x^2 + 2x - 1$ が与えられたとき、$P(0)$ と $P(-1)$ の値を求める問題です。

多項式関数の値代入
2025/8/14

与えられた式は $x^3 + x^2 - 3x - 1 = B(x-1) - 3x + 1$ です。この式から $B$ を求めることが問題です。

多項式因数分解式の変形
2025/8/14

数列 $\{a_n\}$ の初項 $a_1$ から第 $n$ 項 $a_n$ までの和 $S_n$ が $S_n = n^3 + 3n^2 + 2n$ であるとする。 (1) $a_1, a_2$ を...

数列級数部分分数分解
2025/8/14

与えられた漸化式で定義される数列 $\{a_n\}$ の一般項を求めます。 (1) $a_1 = 4, \ 2a_{n+1} = a_n \ (n = 1, 2, ...)$ (2) $a_1 = 1...

数列漸化式等比数列階差数列
2025/8/14

与えられた式 $A = (2+1)(x^2 - 3x - 2) + 4$ を簡略化します。

式の簡略化多項式分配法則
2025/8/14