与えられた不定積分 $\int 5x^2 dx$ を計算します。

解析学不定積分積分公式
2025/4/6

1. 問題の内容

与えられた不定積分 5x2dx\int 5x^2 dx を計算します。

2. 解き方の手順

不定積分の基本的な公式 xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C を用います。ここで、CCは積分定数です。
定数倍の積分は kf(x)dx=kf(x)dx\int k f(x) dx = k \int f(x) dx で計算できます。
まず、定数 55 を積分の外に出します。
5x2dx=5x2dx\int 5x^2 dx = 5 \int x^2 dx
次に、x2x^2 の積分を計算します。
x2dx=x2+12+1+C=x33+C\int x^2 dx = \frac{x^{2+1}}{2+1} + C = \frac{x^3}{3} + C
したがって、
5x2dx=5x33+C=53x3+C5 \int x^2 dx = 5 \cdot \frac{x^3}{3} + C = \frac{5}{3}x^3 + C

3. 最終的な答え

53x3\frac{5}{3}x^3

「解析学」の関連問題

与えられた関数 $y = \log \frac{x \sqrt{2x+1}}{(2x-1)^3}$ の導関数を求める問題です。

導関数対数関数微分
2025/7/23

次の3つの不定積分を求める問題です。 (1) $\int \frac{dx}{1 + \cos x + \sin x}$ (2) $\int \sin^3 x \cos^3 x dx$ (3) $\i...

不定積分三角関数置換積分半角の公式
2025/7/23

関数 $f(x) = x^{3x}$ ($x > 0$) を対数微分法を用いて微分せよ。

微分対数微分法逆関数三角関数
2025/7/23

次の極限値を計算する。 (1) $\lim_{n\to\infty} \frac{\pi}{n} \left( \sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \...

極限リーマン和積分部分積分定積分
2025/7/23

不定積分 $\int \frac{x^2}{x^2 - x - 6} dx$ を計算する問題です。

不定積分部分分数分解積分
2025/7/23

与えられた関数の2階導関数を求める問題です。 (1) $f(x) = \cos 3x$ (2) $g(x) = e^{-x^2 + 4}$

微分導関数2階導関数三角関数指数関数
2025/7/23

次の不定積分を求めます。 $\int \frac{x^2}{x^3 - x - 6} dx$

不定積分部分分数分解積分計算対数関数arctan
2025/7/23

与えられた6つの関数をそれぞれ微分する問題です。 (3) $\sqrt{x^2 - 5x + 8}$ (4) $\log(x^4 + x^2 + 2)$ (5) $\sin(2x^3 + 1)$ (6...

微分合成関数の微分対数関数三角関数指数関数
2025/7/23

与えられた4つの不定積分を計算します。 (1) $\int \frac{\sqrt{x}}{1+\sqrt{x}} dx$ (2) $\int \frac{1}{1+\sqrt{x^2+1}} dx$...

不定積分置換積分三角関数積分
2025/7/23

曲線 $y = 2e^x$ 上の点Pにおける接線が原点を通るとき、その接線の方程式を求める。

微分接線指数関数方程式
2025/7/23