関数 $y = -\cos \theta$ の周期を求める問題です。

解析学三角関数周期コサイン
2025/4/6

1. 問題の内容

関数 y=cosθy = -\cos \theta の周期を求める問題です。

2. 解き方の手順

コサイン関数の周期は 2π2\pi です。
y=cosθy = \cos \theta の周期は 2π2\pi です。
y=cosθy = -\cos \theta は、y=cosθy = \cos \thetaxx 軸に対して反転した関数ですが、周期は変化しません。
したがって、y=cosθy = -\cos \theta の周期も 2π2\pi となります。

3. 最終的な答え

2π2\pi

「解析学」の関連問題

与えられた3つの関数について、それぞれ第3次導関数を求める。 (1) $y = \frac{1}{x^2 - x}$ (2) $y = \sqrt{2x + 1}$ (3) $y = \cos^3 x...

微分導関数部分分数分解三角関数
2025/6/2

$f(x)$ は $0$ でない $x$ の多項式であり、$xf''(x) + (1-x)f'(x) + 3f(x) = 0$ を満たし、$f(0) = 1$ である。このとき、$f(x)$ の次数と...

微分方程式多項式
2025/6/2

与えられた4つの微分方程式の一般解を特性方程式を立てて求める問題です。 (1) $y' = ky$ ($k$は定数) (2) $ay' = 0$ ($a$は定数) (3) $y'' + 4y' + 3...

微分方程式一般解特性方程式線形微分方程式
2025/6/2

与えられた極限を計算する問題です。 $$\lim_{n \to \infty} \frac{\log(n+1)}{\log n}$$

極限ロピタルの定理対数関数
2025/6/2

関数 $y = \sqrt{\frac{2x-1}{3x+1}}$ の $x=1$ における接線を $l$ とする。接線 $l$ と $y$ 軸との交点の $y$ 座標を求める。

微分接線合成関数の微分
2025/6/2

与えられた6つの関数を微分せよ。ただし、$a$ と $b$ は定数で、$a>0$ かつ $a \neq 1$ とする。 (1) $y = e^{-2x} \sin 2x$ (2) $y = 10^{\...

微分合成関数対数関数指数関数三角関数
2025/6/2

$\sin \alpha - \sin \beta = -\frac{\sqrt{2}}{2}$、$\cos \alpha + \cos \beta = \frac{\sqrt{6}}{2}$のとき、...

三角関数加法定理三角関数の合成
2025/6/2

$y = \sin^2 x + 4\sin x \cos x + 5\cos^2 x$ のとりうる値の範囲を求める問題です。途中の式の一部が空欄になっています。空欄を埋めて、最終的な範囲を求めます。

三角関数最大値最小値三角関数の合成
2025/6/2

(1) $\cos\frac{\pi}{3}$ と $\sin\frac{\pi}{3}$ の値を求め、さらに $n < \frac{\pi}{3} < n+1$ を満たす整数 $n$ の値を求める。...

三角関数角度ラジアン大小比較
2025/6/2

次の2つの不等式を$x > 0$の範囲で示す問題です。 (1) $x - \frac{x^3}{6} < \sin x < x$ (2) $x - \frac{x^3}{3} < \tan^{-1} ...

不等式三角関数逆三角関数関数の微分テイラー展開
2025/6/2