赤玉4個と白玉3個を1列に並べる並べ方は全部で何通りあるかを求める問題です。

確率論・統計学順列組み合わせ場合の数
2025/4/7

1. 問題の内容

赤玉4個と白玉3個を1列に並べる並べ方は全部で何通りあるかを求める問題です。

2. 解き方の手順

まず、赤玉4個と白玉3個、合計7個の玉を区別せずに並べる場合の数を考えます。これは、7個のものを並べる順列なので、7!通りです。
しかし、赤玉同士、白玉同士は区別しないので、それぞれの並び順を考慮する必要があります。
赤玉4個の並び順は4!通り、白玉3個の並び順は3!通りです。
したがって、求める並べ方の総数は、7!を4!と3!で割ったものになります。
すなわち、
7!4!3!\frac{7!}{4!3!}
計算すると、
7!4!3!=7×6×5×4×3×2×1(4×3×2×1)(3×2×1)=7×6×53×2×1=7×5=35\frac{7!}{4!3!} = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(4 \times 3 \times 2 \times 1)(3 \times 2 \times 1)} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 7 \times 5 = 35

3. 最終的な答え

35通り

「確率論・統計学」の関連問題

問題は3つあります。 * 53: 大人5人と子供10人の合計15人の中から5人を選ぶ場合の数を求める。 (1) すべての選び方 (2) 大人2人、子供3人を選ぶ選び方 * 54...

組み合わせ順列場合の数組み合わせの公式同じものを含む順列
2025/4/13

大人5人と子供10人の中から5人を選ぶ場合の数を求める問題です。 (1) すべての選び方を求めます。 (2) 大人が2人、子供が3人を選ぶ場合の数を求めます。

組み合わせ順列場合の数重複順列
2025/4/13

53. 大人5人と子ども5人の合計10人の中から5人を選ぶとき、以下の選び方は何通りあるか。 (1) すべての選び方 (2) 大人2人、子ども3人を選ぶ。 54. aが5個、bが3個、cが...

組み合わせ順列重複順列
2025/4/13

問題32と33の順列と階乗の計算問題です。 問題32は順列(nPr)と階乗(n!)の値を計算します。 問題33は順列を使って、特定の条件を満たす並べ方の総数を求めます。

順列階乗組み合わせ
2025/4/13

あるクラスの10人の生徒の数学の成績のデータが与えられている。また、5人の生徒A, B, C, D, Eについて数学と英語の成績が与えられている。 (1) 10人の数学の成績の中央値と平均値を求める。...

中央値平均値分散標準偏差相関係数データの分析
2025/4/13

大小中3個のサイコロを投げたとき、出る目の和が6になる場合は何通りあるか。

サイコロ組み合わせ場合の数
2025/4/13

野球部の最近の試合の得点データ $\{4, 1, 6, 2, 5, 1, 9, 6, 2\}$ から、第一四分位数、第二四分位数(中央値)、第三四分位数、および四分位範囲を求めます。

四分位数中央値四分位範囲データ分析統計
2025/4/13

与えられた野球部の最近の試合の得点データから、四分位数と四分位範囲を求める問題です。データは以下の通りです。 4, 1, 6, 2, 5, 1, 9, 6, 2

四分位数四分位範囲データ分析統計
2025/4/13

A市とB市の11日間の最低気温を表すヒストグラムが与えられています。これらのヒストグラムから読み取れる内容として、以下の4つの選択肢のうち正しいものをすべて選びます。 1. 分布の範囲は、A市の...

ヒストグラム統計中央値最頻値範囲
2025/4/13

ある年の6月の最低気温が低い順に並べられています。 (1) 最大値、最小値、範囲、中央値、最頻値を求める。 (2) 度数分布表を完成させる。 (3) 最低気温が20℃以上であった日は何日あったか。 (...

統計データの分析最大値最小値範囲中央値最頻値度数分布表平均値
2025/4/13