線分ABを3:8の比に外分する点Qは、点Aと点Bのどちらに近い側の延長線上にあるかを答える問題です。

幾何学線分外分幾何
2025/4/7

1. 問題の内容

線分ABを3:8の比に外分する点Qは、点Aと点Bのどちらに近い側の延長線上にあるかを答える問題です。

2. 解き方の手順

外分比が m:nm:n であるとき、m<nm < n であれば、外分点Qは点Aに近い側にあります。
問題文では外分比が3:8なので、m=3m=3n=8n=8 となり、m<nm < n が成り立ちます。

3. 最終的な答え

点A

「幾何学」の関連問題

一辺の長さが2の正四面体ABCDがある。辺BCの中点をMとする。 (1) $\cos{\angle AMD}$の値を求めよ。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求めよ。...

空間図形正四面体余弦定理ヘロンの公式体積
2025/6/17

問題(8)と(9)は、2つの直線のなす角$\theta$を求める問題です。ただし、$0 \le \theta \le \frac{\pi}{2}$とします。 (8)は、$y=\frac{1}{2}x$...

直線角度傾き三角関数
2025/6/17

一辺の長さが2の正四面体ABCDがあり、辺BCの中点をMとする。 (1) $\cos{\angle AMD}$ の値を求める。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求める...

空間図形正四面体余弦定理線分の長さ三角形の面積垂線の長さ
2025/6/17

一辺の長さが2の正四面体ABCDがあり、辺BCの中点をMとする。 (1) $\cos{\angle AMD}$ の値を求める。 (2) 直線BCに関して点Dと対称な点をEとする。線分AEの長さを求める...

空間図形正四面体余弦定理面積体積ベクトル (暗黙的)
2025/6/17

加法定理を用いて、$\cos 75^{\circ}$ の値を求める問題です。

三角関数加法定理角度
2025/6/17

三角形ABCにおいて、$AB = 5$, $BC = 7$, $CA = 8$とする。このとき、$\angle BAC$の大きさと、三角形ABCの外接円の半径Rを求める。

三角形余弦定理正弦定理外接円角度半径
2025/6/17

三角形ABCにおいて、$AB=5$, $BC=7$, $CA=8$である。このとき、$\angle BAC$の大きさと、三角形ABCの外接円の半径Rを求めよ。

三角形余弦定理正弦定理外接円角度
2025/6/17

線分ABを直径とする半円があり、AB上に点Cがある。AC = 2a, CB = 2bとする。AC, CBをそれぞれ直径とする半円を描いたとき、図の色のついた部分の面積を求める。

幾何面積半円図形
2025/6/17

円に内接する四角形ABCDにおいて、AB=CD=2, BC=3, ∠DAB=120°である。 (1) 対角線BDと辺ADの長さを求めよ。 (2) 四角形ABCDの面積を求めよ。

四角形余弦定理面積三角比
2025/6/17

円に内接する四角形ABCDがあり、AB=CD=2, BC=3, ∠DAB=120°である。対角線BDと辺ADの長さを求めよ。

四角形内接余弦定理角度線分の長さ
2025/6/17