円Oにおいて、ATは円Oの接線であり、∠OBA = 26°のとき、∠xの大きさを求める。

幾何学接線角度二等辺三角形
2025/4/7

1. 問題の内容

円Oにおいて、ATは円Oの接線であり、∠OBA = 26°のとき、∠xの大きさを求める。

2. 解き方の手順

* まず、OA = OB(円の半径)なので、△OABは二等辺三角形です。したがって、∠OAB = ∠OBA = 26°です。
* 次に、円の接線の性質より、接線と半径は接点で垂直に交わります。つまり、∠OAT = 90°です。
* ∠xは∠OATから∠OABを引いた角度なので、∠x = ∠OAT - ∠OABとなります。
∠x = 90° - 26°

3. 最終的な答え

∠x = 64°

「幾何学」の関連問題

平行四辺形ABCDにおいて、$AB=4$, $AD=5$, $\cos \angle BAD = \frac{1}{4}$である。 (1) 対角線BDの長さを求めよ。 (2) 対角線ACの長さを求めよ...

平行四辺形余弦定理面積三角比
2025/4/13

長方形ABCDにおいて、AB=4cm、BC=6cmである。点Pは秒速1cmでAD上をAからDへ移動し、点Qは秒速2cmでBC上をB、C間を往復運動する。PとQはA、Bを同時に出発し、PがDに到達したと...

長方形移動三平方の定理台形面積方程式
2025/4/13

$\theta$を鋭角とし、$\tan{\theta} = 3$のとき、$\cos{\theta}$の値を求めよ。

三角比三角関数tancos鋭角
2025/4/13

正四面体ABCDの各辺の中点をP, Q, R, S, T, Uとする。この正四面体を平面PQR, RSU, PST, QTUで切ったときにできる立体PQRSTUが正八面体であることを示す問題です。

正四面体正八面体中点連結定理空間図形
2025/4/13

円に内接する四角形ABCDにおいて、$AB=5$, $AD=3$, $\angle BAD = 120^\circ$である。対角線ACは$\angle BAD$を二等分する。以下の問いに答えよ。 (1...

円に内接する四角形余弦定理正弦定理三角形の面積三角比
2025/4/13

図において、$\angle ABC = \angle ACD$, $AB = 6 \text{ cm}$, $BC = 4 \text{ cm}$, $CA = 3 \text{ cm}$ のとき、$...

相似三角形辺の比
2025/4/13

三角形ABCにおいて、$AB=1, BC=\sqrt{7}, \cos{\angle ABC}=\frac{5}{2\sqrt{7}}$であるとき、以下の問いに答える問題です。 (1) 辺CAの長さを...

三角形余弦定理面積角の二等分線の定理三角比
2025/4/13

3点A(0, 2), B(-1, -1), C(3, 0)が与えられている。 (1) 三角形ABCの重心Gの座標を求める。 (2) 3点A, B, Cともう1つの点Dを結んで平行四辺形を作るとき、頂点...

ベクトル重心平行四辺形座標
2025/4/13

問題40は、半径6cm、中心角60°のおうぎ形について、(1)弧の長さを求め、(2)面積を求める問題です。問題41は、(1)直方体を半分にしたような立体、(2)円錐、(3)半径7cmの球の体積を求める...

おうぎ形円錐体積弧の長さ面積
2025/4/13

2点A(-2, 2)とB(3, 1)の間の距離を求める問題です。

距離座標2点間の距離
2025/4/13