三角形ABCにおいて、$b=3$, $c=2$, $A=60^\circ$のとき、$a = \sqrt{\boxed{エ}}$である。空欄エに入る数を求めよ。

幾何学三角形余弦定理三角比
2025/4/7

1. 問題の内容

三角形ABCにおいて、b=3b=3, c=2c=2, A=60A=60^\circのとき、a=a = \sqrt{\boxed{エ}}である。空欄エに入る数を求めよ。

2. 解き方の手順

余弦定理を使って、aaの値を求めます。余弦定理は以下の通りです。
a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A
与えられた値を代入します。b=3b=3, c=2c=2, A=60A=60^\circなので、
a2=32+22232cos60a^2 = 3^2 + 2^2 - 2 \cdot 3 \cdot 2 \cdot \cos 60^\circ
cos60=12\cos 60^\circ = \frac{1}{2} なので、
a2=9+41212a^2 = 9 + 4 - 12 \cdot \frac{1}{2}
a2=136a^2 = 13 - 6
a2=7a^2 = 7
したがって、a=7a = \sqrt{7}

3. 最終的な答え

7

「幾何学」の関連問題

次の円の方程式を求める問題です。 (1) 円 $x^2 + y^2 - 3x + 5y - 1 = 0$ と中心が同じで、点 $(1, 2)$ を通る円 (2) 点 $(1, -3)$ に関して、円 ...

円の方程式座標平面対称半径中心
2025/6/3

ベクトル $\vec{a}$ と $\vec{b}$ が与えられており、$|\vec{a}| = 4$, $|\vec{b}| = 5$, $|\vec{b} - \vec{a}| = 6$ である。...

ベクトル内積三角比面積外心
2025/6/3

3直線 $x - 3y = -5$, $4x + 3y = -5$, $2x - y = 5$ で作られる三角形の面積を求めます。

三角形面積座標平面連立方程式
2025/6/3

3直線 $x - 3y = -5$, $4x + 3y = -5$, $2x - y = 5$ で作られる三角形の面積を求める問題です。

平面図形三角形面積連立方程式
2025/6/3

直線 $l: y = 2x$ が与えられている。 (1) 点 $A(5, 0)$ に関して $l$ と対称な点 $B$ の座標を求めよ。 (2) 直線 $3x + y = 15$ に関して $l$ と...

直線対称座標傾き垂直
2025/6/3

3辺の長さが2cm, 6cm, 8cmの直方体の表面積を求める。

表面積直方体体積3次元
2025/6/3

3辺の長さが3cm, 4cm, 5cmの直方体の表面積を求める。

表面積直方体立体図形
2025/6/3

半径2cmの球の表面積を求める問題です。選択肢の中から正しいものを選びます。

表面積半径体積
2025/6/3

半径7cmの球の体積を求める問題です。

体積半径公式
2025/6/3

半径が8cmの球の体積を求める問題です。

体積半径公式
2025/6/3