三角形ABCにおいて、$a=5$, $c=4$, $B=120^\circ$ のとき、面積を求めよ。面積は ス $\sqrt{}$ セ の形で答える。

幾何学三角形面積三角比正弦
2025/4/7

1. 問題の内容

三角形ABCにおいて、a=5a=5, c=4c=4, B=120B=120^\circ のとき、面積を求めよ。面積は ス \sqrt{} セ の形で答える。

2. 解き方の手順

三角形の面積を求める公式の一つに、S=12acsinBS = \frac{1}{2}ac\sin{B} があります。
この公式に、与えられた値を代入して計算します。
sin120=sin(18060)=sin60=32\sin{120^\circ} = \sin{(180^\circ - 60^\circ)} = \sin{60^\circ} = \frac{\sqrt{3}}{2} です。
したがって、
S=12×5×4×32=53S = \frac{1}{2} \times 5 \times 4 \times \frac{\sqrt{3}}{2} = 5\sqrt{3}

3. 最終的な答え

ス: 5
セ: 3

「幾何学」の関連問題

問題5は、正三角形と長方形を組み合わせた五角形の周の長さ $l$ に関する問題です。 (1) 長方形の横の長さ $b$ を、正三角形の一辺の長さ $a$ と周の長さ $l$ を用いて表します。 (2)...

図形周の長さ方程式代入長方形正三角形
2025/6/16

直角三角形ABCを、ACを軸として1回転させてできる立体の体積をS、BCを軸として1回転させてできる立体の体積をTとする。SはTの何倍になるかを求める。

体積円錐回転体直角三角形
2025/6/16

問題6は、直角三角形ABCをACを軸として回転させた立体の体積をS、BCを軸として回転させた立体の体積をTとしたとき、SがTの何倍になるかを求める問題です。

体積円錐回転体直角三角形
2025/6/16

四面体OABCにおいて、$OA = 2\sqrt{5}$、$OB = OC = \sqrt{5}$、$BC = 2\sqrt{3}$、$AB = AC$、$\angle AOC = 120^\circ...

空間図形四面体余弦定理ベクトル体積面積ヘロンの公式
2025/6/16

四面体OABCにおいて、$OA = 2\sqrt{5}$, $OB = OC = \sqrt{5}$, $BC = 2\sqrt{3}$, $AB = AC$, $\angle AOC = 120^\...

四面体空間図形余弦定理面積ベクトル
2025/6/16

四面体OABCにおいて、辺OAを1:2に内分する点をD、辺OBの中点をE、辺OCを2:1に内分する点をFとする。三角形DEFの重心をGとし、直線OGと平面ABCの交点をPとする。$\overright...

ベクトル空間ベクトル四面体重心平面の方程式
2025/6/16

3点 $A(-1, -1, 2)$、$B(5, 1, 3)$、$C(2, -1, 4)$ で定まる平面 $ABC$ 上に点 $P(x, 3, -2)$ があるとき、$x$ の値を求める問題です。

ベクトル空間ベクトル平面の方程式
2025/6/16

3点 $A(-1, -1, 2)$, $B(5, 1, 3)$, $C(2, -1, 4)$ で定まる平面ABC上に点 $P(x, 3, -2)$ があるとき、$x$ の値を求める問題です。

ベクトル空間ベクトル平面線形結合連立方程式
2025/6/16

四面体OABCにおいて、辺ABを4:5に内分する点をDとし、線分CDを7:3に内分する点をPとする。$\vec{OA} = \vec{a}$, $\vec{OB} = \vec{b}$, $\vec{...

ベクトル空間ベクトル内分点四面体
2025/6/16

底面の半径が10cm、高さが $k$ cmの円柱がある。底面の半径を $x$ cm増やしたとき、体積が44%増加した。このときの $x$ の値を求める。

円柱体積割合方程式
2025/6/16