定積分 $\int_{-2}^{-1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx$ を計算します。

解析学定積分積分
2025/4/7

1. 問題の内容

定積分 21(6x22x+3)dx+11(6x22x+3)dx+11(6x22x+3)dx\int_{-2}^{-1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx を計算します。

2. 解き方の手順

まず、不定積分を計算します。
(6x22x+3)dx=6x2dx2xdx+3dx=6x332x22+3x+C=2x3x2+3x+C\int (6x^2 - 2x + 3) dx = 6\int x^2 dx - 2\int x dx + 3\int dx = 6 \cdot \frac{x^3}{3} - 2 \cdot \frac{x^2}{2} + 3x + C = 2x^3 - x^2 + 3x + C
ここで、F(x)=2x3x2+3xF(x) = 2x^3 - x^2 + 3x とおきます。
次に、定積分を計算します。
21(6x22x+3)dx=F(1)F(2)=(2(1)3(1)2+3(1))(2(2)3(2)2+3(2))=(213)(1646)=6(26)=20\int_{-2}^{-1} (6x^2 - 2x + 3) dx = F(-1) - F(-2) = (2(-1)^3 - (-1)^2 + 3(-1)) - (2(-2)^3 - (-2)^2 + 3(-2)) = (-2 - 1 - 3) - (-16 - 4 - 6) = -6 - (-26) = 20
11(6x22x+3)dx=F(1)F(1)=(2(1)3(1)2+3(1))(2(1)3(1)2+3(1))=(21+3)(213)=4(6)=10\int_{-1}^{1} (6x^2 - 2x + 3) dx = F(1) - F(-1) = (2(1)^3 - (1)^2 + 3(1)) - (2(-1)^3 - (-1)^2 + 3(-1)) = (2 - 1 + 3) - (-2 - 1 - 3) = 4 - (-6) = 10
したがって、
21(6x22x+3)dx+11(6x22x+3)dx+11(6x22x+3)dx=20+10+10=40\int_{-2}^{-1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx = 20 + 10 + 10 = 40

3. 最終的な答え

40

「解析学」の関連問題

与えられた関数 $y = x - 2x\cos^2 x$ の導関数 $y'$ を求める問題です。

微分導関数三角関数積の微分法倍角の公式
2025/6/8

与えられた極限を計算します。 $$ \lim_{x \to 0} \frac{2^x - 1 - (\log 2)x}{x^2} $$

極限ロピタルの定理微分指数関数
2025/6/8

与えられた3つの極限を計算する問題です。 (1) $\lim_{x \to 1+0} \frac{|x-1|}{x-1}$ (2) $\lim_{x \to -0} \frac{x^2 + 3x}{|...

極限関数の極限片側極限
2025/6/8

関数 $f(x) = -\sqrt{x^2 + 4x + 4} + \sqrt{x^2 - 4x + 4}$ について、以下の問いに答えます。 (1) $f(1)$ を求めます。 (2) $0 \le...

関数の最大最小絶対値場合分け関数の式変形
2025/6/8

数列$\{a_n\}$について、$\lim_{n\to\infty} a_n$ を求めます。 (1) $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \f...

数列極限リーマン和積分対数
2025/6/8

関数群 $\{1, \cos t, \cos 2t, \cos 3t, ...\}$ が範囲 $[-\pi, \pi]$ で正規直交関数系をなしているかどうかを調べる問題です。

フーリエ級数直交関数系正規直交関数系積分
2025/6/8

関数群 $\{1, \cos t, \cos 2t, \cos 3t, ...\}$ が範囲 $[-\pi, \pi]$ で正規直交関数系をなしているか調べる。

フーリエ級数直交関数系正規直交関数系積分
2025/6/8

以下の極限を求める問題です。 $\lim_{x \to 0} \frac{e^x - 1 - x\sqrt{x+1}}{x^3}$

極限テイラー展開指数関数べき乗根
2025/6/8

次の5つの関数を微分してください。 (1) $e^{x^4}$ (2) $e^{x^2\cos x}$ (3) $\log |\log x|$ (4) $(\log(x^2+x+1))^3$ (5) ...

微分合成関数の微分対数微分
2025/6/8

与えられた極限を求める問題です。 $$ \lim_{x \to 0} \frac{e^x - 1 - x\sqrt{x+1}}{x^3} $$

極限マクローリン展開テイラー展開指数関数平方根
2025/6/8