定積分 $\int_{-2}^{-1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx$ を計算します。解析学定積分積分2025/4/71. 問題の内容定積分 ∫−2−1(6x2−2x+3)dx+∫−11(6x2−2x+3)dx+∫−11(6x2−2x+3)dx\int_{-2}^{-1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx∫−2−1(6x2−2x+3)dx+∫−11(6x2−2x+3)dx+∫−11(6x2−2x+3)dx を計算します。2. 解き方の手順まず、不定積分を計算します。∫(6x2−2x+3)dx=6∫x2dx−2∫xdx+3∫dx=6⋅x33−2⋅x22+3x+C=2x3−x2+3x+C\int (6x^2 - 2x + 3) dx = 6\int x^2 dx - 2\int x dx + 3\int dx = 6 \cdot \frac{x^3}{3} - 2 \cdot \frac{x^2}{2} + 3x + C = 2x^3 - x^2 + 3x + C∫(6x2−2x+3)dx=6∫x2dx−2∫xdx+3∫dx=6⋅3x3−2⋅2x2+3x+C=2x3−x2+3x+Cここで、F(x)=2x3−x2+3xF(x) = 2x^3 - x^2 + 3xF(x)=2x3−x2+3x とおきます。次に、定積分を計算します。∫−2−1(6x2−2x+3)dx=F(−1)−F(−2)=(2(−1)3−(−1)2+3(−1))−(2(−2)3−(−2)2+3(−2))=(−2−1−3)−(−16−4−6)=−6−(−26)=20\int_{-2}^{-1} (6x^2 - 2x + 3) dx = F(-1) - F(-2) = (2(-1)^3 - (-1)^2 + 3(-1)) - (2(-2)^3 - (-2)^2 + 3(-2)) = (-2 - 1 - 3) - (-16 - 4 - 6) = -6 - (-26) = 20∫−2−1(6x2−2x+3)dx=F(−1)−F(−2)=(2(−1)3−(−1)2+3(−1))−(2(−2)3−(−2)2+3(−2))=(−2−1−3)−(−16−4−6)=−6−(−26)=20∫−11(6x2−2x+3)dx=F(1)−F(−1)=(2(1)3−(1)2+3(1))−(2(−1)3−(−1)2+3(−1))=(2−1+3)−(−2−1−3)=4−(−6)=10\int_{-1}^{1} (6x^2 - 2x + 3) dx = F(1) - F(-1) = (2(1)^3 - (1)^2 + 3(1)) - (2(-1)^3 - (-1)^2 + 3(-1)) = (2 - 1 + 3) - (-2 - 1 - 3) = 4 - (-6) = 10∫−11(6x2−2x+3)dx=F(1)−F(−1)=(2(1)3−(1)2+3(1))−(2(−1)3−(−1)2+3(−1))=(2−1+3)−(−2−1−3)=4−(−6)=10したがって、∫−2−1(6x2−2x+3)dx+∫−11(6x2−2x+3)dx+∫−11(6x2−2x+3)dx=20+10+10=40\int_{-2}^{-1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx + \int_{-1}^{1} (6x^2 - 2x + 3) dx = 20 + 10 + 10 = 40∫−2−1(6x2−2x+3)dx+∫−11(6x2−2x+3)dx+∫−11(6x2−2x+3)dx=20+10+10=403. 最終的な答え40