次の定積分を計算します。 $\int_{1}^{3} (60x^2 - 40x + 10) dx$解析学定積分積分2025/4/71. 問題の内容次の定積分を計算します。∫13(60x2−40x+10)dx\int_{1}^{3} (60x^2 - 40x + 10) dx∫13(60x2−40x+10)dx2. 解き方の手順まず、不定積分を計算します。∫(60x2−40x+10)dx=60∫x2dx−40∫xdx+10∫1dx\int (60x^2 - 40x + 10) dx = 60 \int x^2 dx - 40 \int x dx + 10 \int 1 dx ∫(60x2−40x+10)dx=60∫x2dx−40∫xdx+10∫1dx=60⋅x33−40⋅x22+10x+C= 60 \cdot \frac{x^3}{3} - 40 \cdot \frac{x^2}{2} + 10x + C=60⋅3x3−40⋅2x2+10x+C=20x3−20x2+10x+C= 20x^3 - 20x^2 + 10x + C=20x3−20x2+10x+C次に、定積分を計算します。∫13(60x2−40x+10)dx=[20x3−20x2+10x]13\int_{1}^{3} (60x^2 - 40x + 10) dx = [20x^3 - 20x^2 + 10x]_{1}^{3}∫13(60x2−40x+10)dx=[20x3−20x2+10x]13=(20(33)−20(32)+10(3))−(20(13)−20(12)+10(1))= (20(3^3) - 20(3^2) + 10(3)) - (20(1^3) - 20(1^2) + 10(1))=(20(33)−20(32)+10(3))−(20(13)−20(12)+10(1))=(20(27)−20(9)+30)−(20−20+10)= (20(27) - 20(9) + 30) - (20 - 20 + 10)=(20(27)−20(9)+30)−(20−20+10)=(540−180+30)−(10)= (540 - 180 + 30) - (10)=(540−180+30)−(10)=390−10= 390 - 10=390−10=380= 380=3803. 最終的な答え380