与えられた5つの定積分を計算し、解答欄に適切な値を入力する問題です。解析学定積分三角関数指数関数対数関数積分計算2025/4/7はい、承知しました。以下の形式で回答します。1. 問題の内容与えられた5つの定積分を計算し、解答欄に適切な値を入力する問題です。2. 解き方の手順(1) ∫π6π4(tanx+1tanx)2dx\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} (\tan x + \frac{1}{\tan x})^2 dx∫6π4π(tanx+tanx1)2dx(tanx+1tanx)2=tan2x+2+1tan2x=tan2x+2+cot2x=(tan2x+1)+(cot2x+1)=1cos2x+1sin2x=sin2x+cos2xsin2xcos2x=1sin2xcos2x=44sin2xcos2x=4sin22x=4csc22x(\tan x + \frac{1}{\tan x})^2 = \tan^2 x + 2 + \frac{1}{\tan^2 x} = \tan^2 x + 2 + \cot^2 x = (\tan^2 x + 1) + (\cot^2 x + 1) = \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} = \frac{1}{\sin^2 x \cos^2 x} = \frac{4}{4 \sin^2 x \cos^2 x} = \frac{4}{\sin^2 2x} = 4 \csc^2 2x(tanx+tanx1)2=tan2x+2+tan2x1=tan2x+2+cot2x=(tan2x+1)+(cot2x+1)=cos2x1+sin2x1=sin2xcos2xsin2x+cos2x=sin2xcos2x1=4sin2xcos2x4=sin22x4=4csc22x∫π6π44csc22xdx=4[−12cot2x]π6π4=−2[cotπ2−cotπ3]=−2(0−13)=23=233\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} 4 \csc^2 2x dx = 4 \left[ -\frac{1}{2} \cot 2x \right]_{\frac{\pi}{6}}^{\frac{\pi}{4}} = -2 \left[ \cot \frac{\pi}{2} - \cot \frac{\pi}{3} \right] = -2 (0 - \frac{1}{\sqrt{3}}) = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}∫6π4π4csc22xdx=4[−21cot2x]6π4π=−2[cot2π−cot3π]=−2(0−31)=32=323(2) ∫01(ex+1ex)2dx=∫01(ex+e−x)2dx=∫01(e2x+2+e−2x)dx=[12e2x+2x−12e−2x]01=(12e2+2−12e−2)−(12+0−12)=12e2+2−12e2\int_{0}^{1} (e^x + \frac{1}{e^x})^2 dx = \int_{0}^{1} (e^x + e^{-x})^2 dx = \int_{0}^{1} (e^{2x} + 2 + e^{-2x}) dx = \left[ \frac{1}{2} e^{2x} + 2x - \frac{1}{2} e^{-2x} \right]_{0}^{1} = (\frac{1}{2} e^2 + 2 - \frac{1}{2} e^{-2}) - (\frac{1}{2} + 0 - \frac{1}{2}) = \frac{1}{2}e^2 + 2 - \frac{1}{2e^2}∫01(ex+ex1)2dx=∫01(ex+e−x)2dx=∫01(e2x+2+e−2x)dx=[21e2x+2x−21e−2x]01=(21e2+2−21e−2)−(21+0−21)=21e2+2−2e21=e22+2−12e2= \frac{e^2}{2} + 2 - \frac{1}{2e^2}=2e2+2−2e21なので、e2/2+2−e−2/2e^{2}/2 + 2 - e^{-2}/2e2/2+2−e−2/2(3) ∫0π8cos24xdx=∫0π81+cos8x2dx=12∫0π8(1+cos8x)dx=12[x+18sin8x]0π8=12[π8+18sinπ−(0+18sin0)]=12[π8+0−0]=π16\int_{0}^{\frac{\pi}{8}} \cos^2 4x dx = \int_{0}^{\frac{\pi}{8}} \frac{1 + \cos 8x}{2} dx = \frac{1}{2} \int_{0}^{\frac{\pi}{8}} (1 + \cos 8x) dx = \frac{1}{2} \left[ x + \frac{1}{8} \sin 8x \right]_{0}^{\frac{\pi}{8}} = \frac{1}{2} \left[ \frac{\pi}{8} + \frac{1}{8} \sin \pi - (0 + \frac{1}{8} \sin 0) \right] = \frac{1}{2} \left[ \frac{\pi}{8} + 0 - 0 \right] = \frac{\pi}{16}∫08πcos24xdx=∫08π21+cos8xdx=21∫08π(1+cos8x)dx=21[x+81sin8x]08π=21[8π+81sinπ−(0+81sin0)]=21[8π+0−0]=16π(4) ∫12(x2+1)2xdx=∫12x4+2x2+1xdx=∫12(x3+2x+1x)dx=[14x4+x2+log∣x∣]12=(14(16)+4+log2)−(14+1+0)=4+4+log2−14−1=7−14+log2=274+log2\int_{1}^{2} \frac{(x^2 + 1)^2}{x} dx = \int_{1}^{2} \frac{x^4 + 2x^2 + 1}{x} dx = \int_{1}^{2} (x^3 + 2x + \frac{1}{x}) dx = \left[ \frac{1}{4} x^4 + x^2 + \log |x| \right]_{1}^{2} = (\frac{1}{4} (16) + 4 + \log 2) - (\frac{1}{4} + 1 + 0) = 4 + 4 + \log 2 - \frac{1}{4} - 1 = 7 - \frac{1}{4} + \log 2 = \frac{27}{4} + \log 2∫12x(x2+1)2dx=∫12xx4+2x2+1dx=∫12(x3+2x+x1)dx=[41x4+x2+log∣x∣]12=(41(16)+4+log2)−(41+1+0)=4+4+log2−41−1=7−41+log2=427+log2(5) ∫π6π31tanxdx=∫π6π3cotxdx=∫π6π3cosxsinxdx=[log∣sinx∣]π6π3=logsinπ3−logsinπ6=log32−log12=log3212=log3=log312=12log3\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{\tan x} dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \cot x dx = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\cos x}{\sin x} dx = [\log|\sin x|]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \log \sin \frac{\pi}{3} - \log \sin \frac{\pi}{6} = \log \frac{\sqrt{3}}{2} - \log \frac{1}{2} = \log \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \log \sqrt{3} = \log 3^{\frac{1}{2}} = \frac{1}{2} \log 3∫6π3πtanx1dx=∫6π3πcotxdx=∫6π3πsinxcosxdx=[log∣sinx∣]6π3π=logsin3π−logsin6π=log23−log21=log2123=log3=log321=21log33. 最終的な答え(1) 233\frac{2\sqrt{3}}{3}323(2) e22+2−12e2\frac{e^2}{2} + 2 - \frac{1}{2e^2}2e2+2−2e21(3) π16\frac{\pi}{16}16π(4) 274+log2\frac{27}{4} + \log 2427+log2(5) 12log3\frac{1}{2} \log 321log3