次の定積分を計算してください。 $\int_{-2}^{1} (6x^2 - 4x) \, dx + \int_{1}^{2} (6x^2 - 4x) \, dx$解析学定積分積分計算2025/4/71. 問題の内容次の定積分を計算してください。∫−21(6x2−4x) dx+∫12(6x2−4x) dx\int_{-2}^{1} (6x^2 - 4x) \, dx + \int_{1}^{2} (6x^2 - 4x) \, dx∫−21(6x2−4x)dx+∫12(6x2−4x)dx2. 解き方の手順まず、不定積分を計算します。∫(6x2−4x) dx=6⋅x33−4⋅x22+C=2x3−2x2+C\int (6x^2 - 4x) \, dx = 6 \cdot \frac{x^3}{3} - 4 \cdot \frac{x^2}{2} + C = 2x^3 - 2x^2 + C∫(6x2−4x)dx=6⋅3x3−4⋅2x2+C=2x3−2x2+C次に、定積分の値を計算します。∫−21(6x2−4x) dx=[2x3−2x2]−21=(2(1)3−2(1)2)−(2(−2)3−2(−2)2)=(2−2)−(2(−8)−2(4))=0−(−16−8)=0−(−24)=24\int_{-2}^{1} (6x^2 - 4x) \, dx = [2x^3 - 2x^2]_{-2}^{1} = (2(1)^3 - 2(1)^2) - (2(-2)^3 - 2(-2)^2) = (2 - 2) - (2(-8) - 2(4)) = 0 - (-16 - 8) = 0 - (-24) = 24∫−21(6x2−4x)dx=[2x3−2x2]−21=(2(1)3−2(1)2)−(2(−2)3−2(−2)2)=(2−2)−(2(−8)−2(4))=0−(−16−8)=0−(−24)=24∫12(6x2−4x) dx=[2x3−2x2]12=(2(2)3−2(2)2)−(2(1)3−2(1)2)=(2(8)−2(4))−(2−2)=(16−8)−0=8\int_{1}^{2} (6x^2 - 4x) \, dx = [2x^3 - 2x^2]_{1}^{2} = (2(2)^3 - 2(2)^2) - (2(1)^3 - 2(1)^2) = (2(8) - 2(4)) - (2 - 2) = (16 - 8) - 0 = 8∫12(6x2−4x)dx=[2x3−2x2]12=(2(2)3−2(2)2)−(2(1)3−2(1)2)=(2(8)−2(4))−(2−2)=(16−8)−0=8最後に、これらの値を足し合わせます。∫−21(6x2−4x) dx+∫12(6x2−4x) dx=24+8=32\int_{-2}^{1} (6x^2 - 4x) \, dx + \int_{1}^{2} (6x^2 - 4x) \, dx = 24 + 8 = 32∫−21(6x2−4x)dx+∫12(6x2−4x)dx=24+8=323. 最終的な答え32