三角形ABCにおいて、点Q, Rがそれぞれ辺AC, ABを $1:2$ の比に内分するとき、線分BPとPCの比 $BP:PC$ を求める。

幾何学幾何三角形メネラウスの定理
2025/4/7

1. 問題の内容

三角形ABCにおいて、点Q, Rがそれぞれ辺AC, ABを 1:21:2 の比に内分するとき、線分BPとPCの比 BP:PCBP:PC を求める。

2. 解き方の手順

メネラウスの定理を用いる。
三角形ABCにおいて、直線BRが辺ACと点Qで交わり、辺BCと点Pで交わっている。
メネラウスの定理より、
ARRBBPPCCQQA=1\frac{AR}{RB} \cdot \frac{BP}{PC} \cdot \frac{CQ}{QA} = 1
問題の条件より、AR:RB=2:1AR:RB = 2:1CQ:QA=1:2CQ:QA = 1:2 であるから、
21BPPC12=1\frac{2}{1} \cdot \frac{BP}{PC} \cdot \frac{1}{2} = 1
BPPC=1\frac{BP}{PC} = 1
よって、BP:PC=1:1BP:PC = 1:1

3. 最終的な答え

BP:PC=1:1BP:PC = 1:1

「幾何学」の関連問題

三角形ABCにおいて、$AB=26$, $BC=18$, $AC=10$である。角Aの二等分線と辺BCの交点をDとする。このとき、線分BDの長さを求めよ。

三角形角の二等分線角の二等分線の定理相似
2025/4/14

三角形ABCにおいて、$AB=26$, $BC=24$, $AC=10$である。角Aの二等分線と辺BCの交点をDとするとき、$BD:DC$を求めよ。

幾何三角形角の二等分線
2025/4/14

三角形ABCにおいて、$AB = 20$, $BC = 16$, $AC = 12$である。角Aの二等分線と辺BCの交点をDとするとき、線分BDの長さを求めよ。

三角形角の二等分線線分の長さ
2025/4/14

三角形ABCにおいて、$AB = 12$, $BC = 14$, $AC = 9$である。角Aの二等分線と辺BCの交点をDとする。線分BDの長さを求めよ。

三角形角の二等分線角の二等分線の定理
2025/4/14

三角形ABCにおいて、$AB=5$, $BC=3$, $AC=4$である。角Aの外角の二等分線と辺BCの延長との交点をDとする。線分BDの長さを求めよ。

三角形外角の二等分線相似
2025/4/14

三角形ABCにおいて、AB=8, BC=10, AC=4である。角Aの二等分線と辺BCの交点をDとする。このとき、BD:DCを求めよ。

幾何三角形角の二等分線
2025/4/14

三角形ABCにおいて、$AB=26$, $BC=10$, $AC=24$である。角Aの外角の二等分線と辺BCの延長との交点をDとする。このとき、BD:DCを求めよ。

幾何三角形外角の二等分線
2025/4/14

三角形ABCにおいて、$AB=9$, $BC=4$, $AC=6$である。角Aの外角の二等分線と辺BCの延長との交点をDとする。このとき、$BD:DC$を求めよ。

三角形外角の二等分線角の二等分線定理
2025/4/14

三角形ABCにおいて、$AB = 7$, $BC = 3$, $AC = 5$である。角Aの外角の二等分線と辺BCの延長との交点をDとする。このとき、BD:DCを求めよ。

三角形角の二等分線外角の二等分線相似
2025/4/14

三角形ABCにおいて、$AB=20$, $BC=16$, $AC=12$である。角Aの二等分線と辺BCの交点をDとするとき、BD:DCを求めよ。

三角形角の二等分線幾何
2025/4/14