三角形ABCにおいて、$AB=26$, $BC=10$, $AC=24$である。角Aの外角の二等分線と辺BCの延長との交点をDとする。このとき、BD:DCを求めよ。

幾何学幾何三角形外角の二等分線
2025/4/14

1. 問題の内容

三角形ABCにおいて、AB=26AB=26, BC=10BC=10, AC=24AC=24である。角Aの外角の二等分線と辺BCの延長との交点をDとする。このとき、BD:DCを求めよ。

2. 解き方の手順

角Aの外角の二等分線と辺BCの延長との交点をDとする場合、外角の二等分線の性質より、
BDDC=ABAC\frac{BD}{DC} = \frac{AB}{AC}
が成り立つ。この問題の場合、AB=26AB=26, AC=24AC=24なので、
BDDC=2624=1312\frac{BD}{DC} = \frac{26}{24} = \frac{13}{12}
したがって、BD:DC=13:12BD:DC = 13:12 となる。

3. 最終的な答え

13:12

「幾何学」の関連問題

ベクトル $\vec{a}$, $\vec{b}$ が $|\vec{a}| = 2$, $|\vec{b}| = 5$, $|\vec{a} - \vec{b}| = 3\sqrt{5}$ を満たす...

ベクトル内積ベクトルの大きさ
2025/4/15

$AB = AC = 2$, $\angle A = 30^\circ$ である三角形 $ABC$ がある。このとき、三角形 $ABC$ の面積と辺 $BC$ の長さを求める。

三角形面積余弦定理三角比
2025/4/15

平面上に三角形ABCと点Pがあり、$ \overrightarrow{AP} + 2\overrightarrow{BP} + 3\overrightarrow{CP} = \overrightarr...

ベクトル三角形ベクトルの分解内分点線形結合
2025/4/15

三角形ABCにおいて、点Gは三角形ABCの重心である。DEとBCが平行であるとき、AE:EGを求めよ。

三角形重心相似
2025/4/15

三角形ABCにおいて、点Gは重心である。以下の線分の長さを求めよ。 (1) BD (2) AG

三角形重心線分の長さ中線
2025/4/15

問題は2つあります。どちらも三角形ABCにおいて、点Iが内心であるという条件のもとで、角度$\alpha$を求める問題です。

三角形内心角度角の二等分線
2025/4/15

問題は2つあります。どちらも、三角形ABCにおいて点Iが内心であるとき、角$\alpha$を求める問題です。 (1) 角Aが50度の場合 (2) 角Bが20度、角Cが40度の場合

三角形内心角度
2025/4/15

問題147と148のそれぞれの図において、点Iは三角形ABCの内心である。それぞれの場合について角度αを求めよ。

三角形内心角度角の二等分線
2025/4/15

三角形ABCがあり、点Oは三角形ABCの内心です。角Bの大きさは55度、角Cの大きさは34度です。角BAOの大きさである$\beta$を求めます。

三角形内心角度角の二等分線
2025/4/15

直線 $l$ の方程式が $y = -x + 6$、直線 $m$ の方程式が $y = \frac{1}{3}x + 4$ であるとき、以下の問いに答える。 (1) 点Aの座標を求める。 (2) 原点...

座標平面直線の式連立方程式三角形の面積図形
2025/4/15