まず、a+b−1 を計算する。 a+b−1=(252−3+2)+(252+3−1)−1=52 したがって、(a+b−1)2=(52)2=25×2=50 b−1=252+3−1−1=252+3−2 a(b−1)=(252−3+2)(252+3−2)=(252)2−(3−2)2=425×2−(3−43+4)=225−(7−43)=225−7+43=225−14+43=211+43 次に、a2+(b−1)2 を計算する。 a2+(b−1)2=(a+b−1)2−2a(b−1)+2(b−1)2=a2+2a(b−1)+(b−1)2−2a(b−1) a2+(b−1)2=(a+b−1)2−2a(b−1)=50−2(211+43)=50−11−83=39−83 次に、P=a2+(b+1)(b−3)−ka(b−1) を計算する。 P=a2+b2−2b−3−k(211+43) P=a2+(b−1)2−4−ka(b−1) P=39−83+(252+3−1+1)(252+3−1−3)−ka(b−1) (b+1)(b−3)=(252+3)(252+3−4)=(252+3)2−4(252+3) =(225+56+3)−(102+43) =(231+56−102−43) P=a2+(b+1)(b−3)−ka(b−1)=a2+(b+1)(b−3)−k(211+43)が有理数となるのは、 56−102−43を含む(b+1)(b−3)と −4k3からの項が消える時。 P=a2+b2−2b−3−k(211+43) b2−2b−3=(b−1)2−4 Since P=a2+(b+1)(b−3)−ka(b−1) P=a2+b2−2b−3−k(211+43). If P is a rational number then the terms in (a2+b2−2b−3) must combine with k43 b−1=252+3−2 a+b=52+1 We calculated (b+1)(b−3)=(b−1−2)=(252+3−2+1)(252+3−2−3)=(252+3−1)(252+3−5). a(b−1)=211+43 P is rational when k=0, however from previous results it means we must make zeroed with a suitable constant. Thus ka(b−1)=43=0. So 4k=0. Which only happens when 4k=0. Then 4k=0, for a number to become Rational. Thus not a great strategy. The key point, from (a+b−1)2 we get 50 then (a(b−1)) being equal to (11/2+43) Therefore when k=0, we can deduce: k(11/2+43)=P Since a(b−1)=(11/2+43) we see that The a(b−1)=4(3). So, $P=( a^2 + [ b^2 -4]
Now when we kis(2):thusthe4(×=[36] The term sqrt(), that can not be an irrational number must cancel. When the root equals K,wehave:4k×3 which is root form that when 0 =Rational Thus =k(24) This number means must not equals a factor
Thus a^2 + b+1 * 4\div = sqrt} and Thus be =5
So by this formula equals 0 = thus means is a rational Number that exist in space
⟹,wewant2 This $4= \times
k=k$ =