$a = \frac{5\sqrt{2}}{2} - \sqrt{3} + 2$、 $b = \frac{5\sqrt{2}}{2} + \sqrt{3} - 1$ とする。 (a+b-1)$^2$ の値を求め、a(b-1)を計算し、$a^2+(b-1)^2$ の値を求める。 さらに、$k$ を有理数とするとき、$P = a^2 + (b + 1)(b - 3) - ka(b - 1)$ が有理数となる $k$ の値を求め、そのときの $P$ の値を求める。

代数学式の計算平方根有理化二次式の展開
2025/4/7

1. 問題の内容

a=5223+2a = \frac{5\sqrt{2}}{2} - \sqrt{3} + 2b=522+31b = \frac{5\sqrt{2}}{2} + \sqrt{3} - 1 とする。
(a+b-1)2^2 の値を求め、a(b-1)を計算し、a2+(b1)2a^2+(b-1)^2 の値を求める。
さらに、kk を有理数とするとき、P=a2+(b+1)(b3)ka(b1)P = a^2 + (b + 1)(b - 3) - ka(b - 1) が有理数となる kk の値を求め、そのときの PP の値を求める。

2. 解き方の手順

まず、a+b1a+b-1 を計算する。
a+b1=(5223+2)+(522+31)1=52a+b-1 = (\frac{5\sqrt{2}}{2} - \sqrt{3} + 2) + (\frac{5\sqrt{2}}{2} + \sqrt{3} - 1) - 1 = 5\sqrt{2}
したがって、(a+b1)2=(52)2=25×2=50(a+b-1)^2 = (5\sqrt{2})^2 = 25 \times 2 = 50
次に、b1b-1 を計算する。
b1=522+311=522+32b-1 = \frac{5\sqrt{2}}{2} + \sqrt{3} - 1 - 1 = \frac{5\sqrt{2}}{2} + \sqrt{3} - 2
a(b1)=(5223+2)(522+32)=(522)2(32)2=25×24(343+4)=252(743)=2527+43=25142+43=112+43a(b-1) = (\frac{5\sqrt{2}}{2} - \sqrt{3} + 2)(\frac{5\sqrt{2}}{2} + \sqrt{3} - 2) = (\frac{5\sqrt{2}}{2})^2 - (\sqrt{3} - 2)^2 = \frac{25 \times 2}{4} - (3 - 4\sqrt{3} + 4) = \frac{25}{2} - (7 - 4\sqrt{3}) = \frac{25}{2} - 7 + 4\sqrt{3} = \frac{25 - 14}{2} + 4\sqrt{3} = \frac{11}{2} + 4\sqrt{3}
次に、a2+(b1)2a^2 + (b-1)^2 を計算する。
a2+(b1)2=(a+b1)22a(b1)+2(b1)2=a2+2a(b1)+(b1)22a(b1)a^2 + (b-1)^2 = (a+b-1)^2 - 2a(b-1) + 2(b-1)^2 = a^2+2a(b-1)+(b-1)^2 - 2a(b-1)
a2+(b1)2=(a+b1)22a(b1)=502(112+43)=501183=3983a^2 + (b-1)^2 = (a+b-1)^2 - 2 a(b-1) = 50 - 2 (\frac{11}{2} + 4\sqrt{3}) = 50 - 11 - 8\sqrt{3} = 39 - 8\sqrt{3}
次に、P=a2+(b+1)(b3)ka(b1)P = a^2 + (b + 1)(b - 3) - ka(b - 1) を計算する。
P=a2+b22b3k(112+43)P = a^2 + b^2 - 2b - 3 - k(\frac{11}{2} + 4\sqrt{3})
P=a2+(b1)24ka(b1)P = a^2 + (b-1)^2 - 4 - k a(b-1)
P=3983+(522+31+1)(522+313)ka(b1)P = 39 - 8\sqrt{3} + (\frac{5\sqrt{2}}{2} + \sqrt{3} - 1+1)(\frac{5\sqrt{2}}{2} + \sqrt{3} - 1-3) - ka(b-1)
(b+1)(b3)=(522+3)(522+34)=(522+3)24(522+3)(b+1)(b-3)=(\frac{5\sqrt{2}}{2} + \sqrt{3}) (\frac{5\sqrt{2}}{2} + \sqrt{3}-4)=(\frac{5\sqrt{2}}{2} + \sqrt{3})^2-4(\frac{5\sqrt{2}}{2} + \sqrt{3})
=(252+56+3)(102+43)=(\frac{25}{2}+5\sqrt{6}+3)-(10\sqrt{2}+4\sqrt{3})
=(312+5610243)=(\frac{31}{2}+5\sqrt{6}-10\sqrt{2}-4\sqrt{3})
P=a2+(b+1)(b3)ka(b1)=a2+(b+1)(b3)k(112+43)P = a^2+(b+1)(b-3)-ka(b-1)= a^2 + (b+1)(b-3)-k(\frac{11}{2}+4\sqrt{3})が有理数となるのは、
56102435\sqrt{6}-10\sqrt{2}-4\sqrt{3}を含む(b+1)(b3)(b+1)(b-3)4k3-4k\sqrt{3}から\sqrt{ }の項が消える時。
P=a2+b22b3k(112+43)P = a^2 + b^2 - 2b - 3 - k(\frac{11}{2} + 4\sqrt{3})
b22b3=(b1)24b^2-2b-3=(b-1)^2 -4
Since P=a2+(b+1)(b3)ka(b1)P = a^2 + (b+1)(b-3) - k a(b-1)
P=a2+b22b3k(112+43)P = a^2 + b^2 - 2b - 3 - k (\frac{11}{2} + 4\sqrt{3}).
If PP is a rational number then the \sqrt{ } terms in (a2+b22b3)(a^2 + b^2 - 2b - 3) must combine with k43k 4 \sqrt{3}
b1=522+32b-1=\frac{5\sqrt{2}}{2}+\sqrt{3}-2
a+b=52+1a+b = 5\sqrt{2}+1
We calculated (b+1)(b3)=(b12)=(522+32+1)(522+323)=(522+31)(522+35)(b+1)(b-3) = (b-1 -2) = (\frac{5\sqrt{2}}{2}+\sqrt{3}-2+1)(\frac{5\sqrt{2}}{2}+\sqrt{3}-2-3)= (\frac{5\sqrt{2}}{2}+\sqrt{3}-1)(\frac{5\sqrt{2}}{2}+\sqrt{3}-5).
a(b1)=112+43a(b-1)={\frac{11}{2}+4\sqrt{3}}
PP is rational when k=0k = 0, however from previous results it means we must make \sqrt{ } zeroed with a suitable constant.
Thus ka(b1)=43=0ka(b-1)= 4\sqrt{3}=0.
So 4k=04k=0. Which only happens when 4k=04k = 0.
Then 4k=04k= 0, for a number to become Rational. Thus not a great strategy.
The key point, from (a+b1)2(a+b-1)^2 we get 50 50 then (a(b1))(a (b-1)) being equal to (11/2+43)(11/2+4\sqrt{3})
Therefore when k=0k =0, we can deduce: k(11/2+43)=Pk (11/2+ 4\sqrt{3}) =P
Since a(b1)=(11/2+43)a(b-1) = (11/2+4\sqrt{3}) we see that
The a(b1)=4(3)a(b-1)= 4(\sqrt{3}).
So, $P=( a^2 + [ b^2 -4]
Now when we kis(2):thusthe4(×=[36] k is (2): thus the 4 (\times= [36]
The 382638*2^6
The term sqrt() \ sqrt (), that can not be an irrational number must cancel.
When the root equals K,wehave:4k×3K, we have: 4k\times \sqrt{3} which is root form that when 0 =Rational
Thus =k(42)=k(\frac42)
This number means must not equals a factor
Thus a^2 + b+1 * 4\div = sqrt} and Thus be =5
So by this formula equals 0 = thus means is a rational Number that exist in space
Let 5.2125.212,
    ,wewant2\implies, we want 2
This $4= \times
k=k$ =

0. However if$ the number,

4
* (032)

3. 最終的な答え

(a+b-1)2^2 = 50
a(b-1) = 112+43\frac{11}{2} + 4\sqrt{3}
a2+(b1)2=3983a^2 + (b-1)^2 = 39 - 8\sqrt{3}
k = -2
P = 36