不等式 $2x + 5 \le 9$ を解く問題です。

代数学不等式一次不等式解法
2025/3/12

1. 問題の内容

不等式 2x+592x + 5 \le 9 を解く問題です。

2. 解き方の手順

まず、不等式の両辺から5を引きます。
2x+55952x + 5 - 5 \le 9 - 5
2x42x \le 4
次に、不等式の両辺を2で割ります。
2x242\frac{2x}{2} \le \frac{4}{2}
x2x \le 2

3. 最終的な答え

x2x \le 2

「代数学」の関連問題

2次不等式 $3x^2 - 11x + 10 > 0$ を解きます。

二次不等式因数分解不等式の解法
2025/7/14

放物線 $y = x^2 + ax + b$ を、x軸方向に2、y軸方向に-1だけ平行移動したところ、頂点の座標が $(3, 1)$ になった。このとき、定数 $a$ と $b$ の値を求めよ。

二次関数放物線平行移動平方完成連立方程式
2025/7/14

2次関数 $y = x^2 + ax + b$ のグラフを $x$ 軸方向に $2$, $y$ 軸方向に $-1$ だけ平行移動したところ、頂点の座標が $(3, 1)$ になった。定数 $a$, $...

二次関数平行移動平方完成頂点方程式
2025/7/14

数列 $\{a_n\}$ が $p, q, p, q, \dots$ というように $p$ と $q$ が交互に並ぶ数列であるとき、一般項 $a_n$ を $p$ と $q$ を用いた式で表す。

数列一般項場合分け三角関数
2025/7/14

2直線 $x + 5y - 7 = 0$ と $2x - y - 4 = 0$ の交点を通る直線の方程式を、次の2つの条件で求める。 (1) 点 $(-3, 5)$ を通る。 (2) 直線 $x + ...

直線連立方程式幾何学
2025/7/14

与えられた二つの式を満たす有理数 $p$ と $q$ の値を求めます。 式1: $(\sqrt{2}-1)p + q\sqrt{2} = 2 + \sqrt{2}$ 式2: $\frac{p}{\sq...

連立方程式無理数式の計算
2025/7/14

正の実数 $p$ に対して、数列 $\{a_n\}$ が $a_6 - a_2 = p$ と $a_6 + a_2 = \frac{7}{2}p$ を満たす等差数列であるとき、一般項 $a_n$ と ...

数列等差数列シグマ有理化telescoping sum
2025/7/14

関数 $y = 4x - 3$ について、$x = 5$ のときの $y$ の値を求める問題です。

一次関数関数の値
2025/7/14

与えられた4つの命題の真偽を判定し、偽の場合は反例を挙げる問題です。

命題真偽反例絶対値二等辺三角形
2025/7/14

与えられた多項式 $2x^3 + 2xy^2 + x^2y + 1$ を、$y$ について降べきの順に整理し、$y$ について何次式であるかを答える。

多項式次数降べきの順
2025/7/14