ある列車が、長さ350mの鉄橋を渡り始めてから渡り終わるまでに25秒かかりました。また、この列車が、長さ1050mのトンネルに入り始めてから出てしまうまでに55秒かかりました。列車の長さを $x$ m、速さを秒速 $y$ mとして、以下の問いに答えます。 (1) 鉄橋を渡り始めてから渡り終わるまでにこの列車が進んだ道のりを、$x$ を使って表しなさい。 (2) 連立方程式を作り、この列車の長さと速さ(時速)をそれぞれ求めなさい。
2025/4/8
1. 問題の内容
ある列車が、長さ350mの鉄橋を渡り始めてから渡り終わるまでに25秒かかりました。また、この列車が、長さ1050mのトンネルに入り始めてから出てしまうまでに55秒かかりました。列車の長さを m、速さを秒速 mとして、以下の問いに答えます。
(1) 鉄橋を渡り始めてから渡り終わるまでにこの列車が進んだ道のりを、 を使って表しなさい。
(2) 連立方程式を作り、この列車の長さと速さ(時速)をそれぞれ求めなさい。
2. 解き方の手順
(1) 鉄橋を渡り始めてから渡り終わるまでに列車が進む道のりは、鉄橋の長さと列車の長さを足したものです。したがって、この道のりは メートルです。
(2)
鉄橋を渡る場合、列車の速さ は で表されます。
トンネルを通過する場合、列車の速さ は で表されます。
したがって、以下の連立方程式が得られます。
$\begin{cases}
y = \frac{350 + x}{25} \\
y = \frac{1050 + x}{55}
\end{cases}$
この連立方程式を解きます。
m/秒
時速に変換します。
m/時 = 84 km/時
3. 最終的な答え
(1) メートル
(2) 列車の長さ: m
列車の速さ: 84 km/時