与えられた6つの式の分母を有理化する。代数学分母の有理化平方根の計算式の計算2025/4/201. 問題の内容与えられた6つの式の分母を有理化する。2. 解き方の手順(1) 63\frac{6}{\sqrt{3}}36分母と分子に3\sqrt{3}3をかける。63=6×33×3=633=23\frac{6}{\sqrt{3}} = \frac{6 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}36=3×36×3=363=23(2) 15+3\frac{1}{\sqrt{5}+\sqrt{3}}5+31分母と分子に5−3\sqrt{5}-\sqrt{3}5−3をかける。15+3=5−3(5+3)(5−3)=5−35−3=5−32\frac{1}{\sqrt{5}+\sqrt{3}} = \frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} = \frac{\sqrt{5}-\sqrt{3}}{5-3} = \frac{\sqrt{5}-\sqrt{3}}{2}5+31=(5+3)(5−3)5−3=5−35−3=25−3(3) 223−5\frac{2\sqrt{2}}{3-\sqrt{5}}3−522分母と分子に3+53+\sqrt{5}3+5をかける。223−5=22(3+5)(3−5)(3+5)=62+2109−5=62+2104=32+102\frac{2\sqrt{2}}{3-\sqrt{5}} = \frac{2\sqrt{2}(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})} = \frac{6\sqrt{2}+2\sqrt{10}}{9-5} = \frac{6\sqrt{2}+2\sqrt{10}}{4} = \frac{3\sqrt{2}+\sqrt{10}}{2}3−522=(3−5)(3+5)22(3+5)=9−562+210=462+210=232+10(4) 13+2\frac{1}{\sqrt{3}+2}3+21分母と分子に3−2\sqrt{3}-23−2をかける。13+2=3−2(3+2)(3−2)=3−23−4=3−2−1=2−3\frac{1}{\sqrt{3}+2} = \frac{\sqrt{3}-2}{(\sqrt{3}+2)(\sqrt{3}-2)} = \frac{\sqrt{3}-2}{3-4} = \frac{\sqrt{3}-2}{-1} = 2-\sqrt{3}3+21=(3+2)(3−2)3−2=3−43−2=−13−2=2−3(5) 2+12−1\frac{\sqrt{2}+1}{\sqrt{2}-1}2−12+1分母と分子に2+1\sqrt{2}+12+1をかける。2+12−1=(2+1)(2+1)(2−1)(2+1)=2+22+12−1=3+221=3+22\frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{2+2\sqrt{2}+1}{2-1} = \frac{3+2\sqrt{2}}{1} = 3+2\sqrt{2}2−12+1=(2−1)(2+1)(2+1)(2+1)=2−12+22+1=13+22=3+22(6) 6−26+2\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}6+26−2分母と分子に6−2\sqrt{6}-\sqrt{2}6−2をかける。6−26+2=(6−2)(6−2)(6+2)(6−2)=6−212+26−2=8−24×34=8−434=2−3\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} = \frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})} = \frac{6-2\sqrt{12}+2}{6-2} = \frac{8-2\sqrt{4 \times 3}}{4} = \frac{8-4\sqrt{3}}{4} = 2-\sqrt{3}6+26−2=(6+2)(6−2)(6−2)(6−2)=6−26−212+2=48−24×3=48−43=2−33. 最終的な答え(1) 232\sqrt{3}23(2) 5−32\frac{\sqrt{5}-\sqrt{3}}{2}25−3(3) 32+102\frac{3\sqrt{2}+\sqrt{10}}{2}232+10(4) 2−32-\sqrt{3}2−3(5) 3+223+2\sqrt{2}3+22(6) 2−32-\sqrt{3}2−3