与えられた式 $ab(a-b) + bc(b-c) + ca(c-a)$ を因数分解してください。

代数学因数分解多項式
2025/4/8

1. 問題の内容

与えられた式 ab(ab)+bc(bc)+ca(ca)ab(a-b) + bc(b-c) + ca(c-a) を因数分解してください。

2. 解き方の手順

与えられた式を展開し、整理します。
ab(ab)+bc(bc)+ca(ca)=a2bab2+b2cbc2+c2aca2ab(a-b) + bc(b-c) + ca(c-a) = a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2
式を aa について整理します。
a2bab2+b2cbc2+c2aca2=(bc)a2+(c2b2)a+(b2cbc2)a^2b - ab^2 + b^2c - bc^2 + c^2a - ca^2 = (b-c)a^2 + (c^2 - b^2)a + (b^2c - bc^2)
aa についての式を因数分解します。
(bc)a2+(c2b2)a+(b2cbc2)=(bc)a2(b2c2)a+bc(bc)(b-c)a^2 + (c^2 - b^2)a + (b^2c - bc^2) = (b-c)a^2 - (b^2 - c^2)a + bc(b-c)
共通因数 (bc)(b-c) でくくります。
(bc)a2(b2c2)a+bc(bc)=(bc)[a2(b+c)a+bc](b-c)a^2 - (b^2 - c^2)a + bc(b-c) = (b-c)[a^2 - (b+c)a + bc]
かっこの中を因数分解します。
(bc)[a2(b+c)a+bc]=(bc)(ab)(ac)(b-c)[a^2 - (b+c)a + bc] = (b-c)(a-b)(a-c)
符号を調整して、順番を入れ替えます。
(bc)(ab)(ac)=(ab)(bc)(ca)(b-c)(a-b)(a-c) = -(a-b)(b-c)(c-a)
(bc)(ab)(ac)=(ab)(bc)(1)(ac)(b-c)(a-b)(a-c) = (a-b)(b-c)(-1)(a-c)
(ab)(bc)(ca)(a-b)(b-c)(c-a)

3. 最終的な答え

(ab)(bc)(ca)(a-b)(b-c)(c-a)

「代数学」の関連問題

与えられた式 $(a^2 + 2ab - 3b) \times 3ab$ を展開し、 $-3a^2b + \boxed{\text{ト}}a^2b^2 - \boxed{\text{ナ}}ab^2$ ...

式の展開多項式計算
2025/4/20

与えられた式 $2x(3x^2 + 4x)$ を展開し、$ツx^3 + テx^2$ の形に整理するとき、$ツ$ と $テ$ に当てはまる数字を答える問題です。

展開多項式計算
2025/4/20

問題は、式 $3xy^3 \times (-4x^2y)^2$ を計算し、その結果を $セソx^{タ}y^{チ}$ の形で表すときの $セソ$、$タ$、$チ$ の値を求めるものです。

式の計算指数法則単項式
2025/4/20

問題は、式 $( -3a^2x^3)^2 = \boxed{コサ}a^{\boxed{シ}}x^{\boxed{ス}}$ の空欄を埋める問題です。

指数法則式の展開代数
2025/4/20

$A = 3x^2 + 4x - 1$、 $B = x^2 - 2x - 5$ のとき、$3A - 2B$ を計算し、$x^2$、$x$、定数項の係数を求めます。

多項式式の計算係数
2025/4/20

$A = 3x^2 + 4x - 1$、 $B = x^2 - 2x - 5$ のとき、$A - B$を計算し、与えられた枠を埋める。

多項式式の計算代入
2025/4/20

多項式 $4x^2 + x - 5y^3 - 2$ について、$y$に着目したとき、この多項式が何次式であるかと、定数項を求める問題です。

多項式次数定数項
2025/4/20

多項式 $4x^2 + x - 5y^3 - 2$ について、$x$ に着目したときの次数と定数項を求める問題です。選択肢から適切なものを選びます。

多項式次数定数項
2025/4/20

単項式 $-4x^3y^2$ について、$y$ に着目したときの係数と次数を求める問題です。

単項式係数次数多項式
2025/4/20

与えられた整式 $x^3 + 3xy + 4y^2 - 2x + 7y - 8$ を、$y$ について降べきの順に整理した式を、選択肢の中から選ぶ問題です。

多項式降べきの順
2025/4/20