三角形ABCにおいて、$a=3$, $c=8$, $B=60^\circ$であるとき、面積$S$を求めよ。

幾何学三角形面積三角比正弦公式
2025/3/13

1. 問題の内容

三角形ABCにおいて、a=3a=3, c=8c=8, B=60B=60^\circであるとき、面積SSを求めよ。

2. 解き方の手順

三角形の面積の公式 S=12acsinBS = \frac{1}{2}ac\sin B を用います。
与えられた値を代入すると、
S=12×3×8×sin60S = \frac{1}{2} \times 3 \times 8 \times \sin 60^\circ
sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2} なので、
S=12×3×8×32S = \frac{1}{2} \times 3 \times 8 \times \frac{\sqrt{3}}{2}
S=3×4×31S = 3 \times 4 \times \frac{\sqrt{3}}{1}
S=123S = 12\sqrt{3}

3. 最終的な答え

12312\sqrt{3}

「幾何学」の関連問題

(3) $\tan{\theta} = -2$ のとき、$\sin{\theta}$と$\cos{\theta}$の値を求める問題。 (4) $\cos{115^\circ}$ を $45^\circ...

三角比三角関数角度象限
2025/4/12

円に内接する四角形ABCDにおいて、$AB=6$, $BC=3$, $CD=6$, $\angle B = 120^\circ$のとき、$AC$, $AD$, 円の半径$R$, $\triangle ...

四角形余弦定理正弦定理内接円ヘロンの公式
2025/4/12

図に示された三角形について、指定された角度 $x$ と $y$ の値を求める問題です。 (1) 点Oは三角形ABCの外心です。 (2) 点Iは三角形ABCの内心です。

三角形外心内心角度二等辺三角形
2025/4/12

平行四辺形ABCDにおいて、対角線の交点をO、辺BCの中点をE、線分AEとBDの交点をFとする。このとき、線分AF:FEの比と、三角形AFOと平行四辺形ABCDの面積比を求める。

平行四辺形相似メネラウスの定理面積比
2025/4/12

三角形ABCにおいて、$AB = 4, BC = 5, CA = 6$である。$\angle BAC$の二等分線と辺$BC$との交点を$D$、$\angle BAC$の外角の二等分線と辺$BC$の延長...

三角形角の二等分線辺の長さ
2025/4/12

三角形ABCにおいて、$AB = 3$, $BC = \sqrt{7}$, $CA = 2$であるとき、角Aの大きさを求める問題です。

三角形余弦定理角度
2025/4/12

三角形ABCにおいて、角Bと角Cの二等分線が点Pで交わっている。角BPCの大きさが130度であるとき、角Aの大きさを求める。

三角形角度角の二等分線内角の和
2025/4/11

直角三角形ABCにおいて、$\angle A = 30^\circ$, $\angle B = 90^\circ$, $BC = 1$ である。辺AB上に $\angle CDB = 45^\circ...

直角三角形接弦定理方べきの定理面積
2025/4/11

図において、$PQ = 10$、$\angle AQB = 150^\circ$ であるとき、$AB$ の長さを求める問題です。

三角形角度三角比長さ
2025/4/11

平面上の $\triangle OAB$ において、辺 $AB$ を $2:3$ に内分する点を $P$、線分 $OP$ を $t:(1-t)$ ($0<t<1$) に内分する点を $Q$、直線 $B...

ベクトル内分点面積比
2025/4/11