円 O の外部の点 P から円に接線 PT を引く。直線 PAB が円と点 A, B で交わっており、PA = 4 cm, AB = 12 cm, PT = x cm であるとき、x の値を求めなさい。

幾何学接線割線方べきの定理
2025/4/8

1. 問題の内容

円 O の外部の点 P から円に接線 PT を引く。直線 PAB が円と点 A, B で交わっており、PA = 4 cm, AB = 12 cm, PT = x cm であるとき、x の値を求めなさい。

2. 解き方の手順

円の接線と割線に関する定理を利用します。点 P から円 O への接線 PT と割線 PAB があるとき、次の関係が成り立ちます。
PT2=PAPBPT^2 = PA \cdot PB
この問題では、PA=4PA = 4 cm, AB=12AB = 12 cm, PT=xPT = x cm です。したがって、PB=PA+AB=4+12=16PB = PA + AB = 4 + 12 = 16 cm となります。
上記の式にこれらの値を代入すると、
x2=416x^2 = 4 \cdot 16
x2=64x^2 = 64
x=64x = \sqrt{64}
x=8x = 8

3. 最終的な答え

x = 8 cm

「幾何学」の関連問題

角度を度数法から弧度法へ、または弧度法から度数法へ変換する問題です。具体的には、(1)から(3)は度数法で与えられた角度を弧度法(ラジアン)で表し、(4)から(6)は弧度法で与えられた角度を度数法で表...

角度弧度法度数法三角比
2025/6/19

複素数平面上に3点 A($\alpha = 1+i$), B($\beta = 5+3i$), C($\gamma$) がある。これらの点を頂点とする正三角形 ABC を作るとき、複素数 $\gamm...

複素数平面正三角形複素数
2025/6/19

平面上に2点 A, B があり、$AB=8$ である。直線 AB 上にない点 P をとり、$\triangle ABP$ を作る。$\triangle ABP$ の外接円の半径を $R$ とする。点 ...

幾何外接円正弦定理直角三角形半径最大最小
2025/6/19

一辺の長さが1の正四面体の体積を求める。

正四面体体積空間図形
2025/6/19

座標平面上に3点 A(0, 1), B(0, 2), P(x, x) がある。ただし、$x > 0$ とする。$x$ が変化するとき、$\angle APB$ の最大値を求めよ。

ベクトル最大値三角関数座標平面
2025/6/19

半径1、中心角$\frac{\pi}{3}$の扇形OABがある。弧AB上に2点P, Q、線分OA上に点S、線分OB上に点Rを四角形PQRSが長方形になるようにとる。 (1) $\angle AOP =...

扇形長方形三角関数面積最大化
2025/6/19

半径1、中心角$\frac{\pi}{3}$の扇形OABがある。弧AB上に2点P,Q、線分OA上に点S、線分OB上に点Rを四角形PQRSが長方形になるようにとる。 (1) $\angle AOP = ...

扇形長方形三角関数面積最大化三角比余弦定理
2025/6/19

三角形ABCにおいて、辺BCの中点をMとする。 (1) Mを複素数平面上の原点とし、点A, B, Cの座標をそれぞれ$\alpha$, $\beta$, $\gamma$とする。$\gamma$を$\...

複素数平面幾何学中点距離三角形ベクトル
2025/6/19

複素数平面上の3点A(2+i), B(6-i), C(4+yi)を頂点とする三角形ABCにおいて、∠A = $\frac{\pi}{2}$となるように、実数yの値を定める。

複素数平面ベクトル直交複素数角度
2025/6/19

四面体OABCにおいて、辺OAを3:1に内分する点をD、辺OBを2:1に内分する点をE、辺ACを2:1に内分する点をFとする。3点D, E, Fが定める平面をαとし、平面αと辺BCとの交点をGとする。...

ベクトル空間図形四面体内分平面の方程式
2025/6/19