白玉4個、赤玉2個が入っている袋から、同時に3個の玉を取り出すとき、白玉2個、赤玉1個が取り出される確率を求めます。

確率論・統計学確率組み合わせ場合の数
2025/4/8

1. 問題の内容

白玉4個、赤玉2個が入っている袋から、同時に3個の玉を取り出すとき、白玉2個、赤玉1個が取り出される確率を求めます。

2. 解き方の手順

まず、すべての取り出し方の総数を計算します。これは、6個の玉から3個を選ぶ組み合わせなので、6C3_{6}C_{3}で表されます。
6C3=6!3!3!=6×5×43×2×1=20_{6}C_{3} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20
次に、白玉2個、赤玉1個を取り出す場合の数を計算します。白玉は4個から2個選ぶので、4C2_{4}C_{2}通り。赤玉は2個から1個選ぶので、2C1_{2}C_{1}通り。
4C2=4!2!2!=4×32×1=6_{4}C_{2} = \frac{4!}{2!2!} = \frac{4 \times 3}{2 \times 1} = 6
2C1=2!1!1!=2_{2}C_{1} = \frac{2!}{1!1!} = 2
したがって、白玉2個、赤玉1個を取り出す場合の数は、4C2×2C1=6×2=12_{4}C_{2} \times _{2}C_{1} = 6 \times 2 = 12通りです。
求める確率は、(白玉2個、赤玉1個を取り出す場合の数) / (すべての取り出し方の総数) なので、
1220=35\frac{12}{20} = \frac{3}{5}

3. 最終的な答え

35\frac{3}{5}

「確率論・統計学」の関連問題

3つのサイコロを同時に投げ、それぞれのサイコロの出た目を $X$, $Y$, $Z$ とします。このとき、$X + Y + Z$ の分散を求めなさい。

分散確率変数サイコロ期待値
2025/4/13

確率変数 $X$ の期待値 $E(X) = -3$、分散 $V(X) = 5$、確率変数 $Y$ の期待値 $E(Y) = 2$、分散 $V(Y) = 4$ である。$X$ と $Y$ は互いに独立で...

期待値分散標準偏差確率変数独立
2025/4/13

3つのサイコロを同時に投げたとき、それぞれの出目を $X, Y, Z$ とします。積 $XYZ$ の期待値を求めます。

期待値確率サイコロ
2025/4/13

確率変数 $X$ と $Y$ が互いに独立で、それぞれの確率分布が与えられている。積 $XY$ の期待値 $E[XY]$ を求める。$X$ は $1$ と $3$ の値をとり、それぞれの確率は $P(...

確率変数期待値独立性確率分布
2025/4/13

大小2個のサイコロを同時に投げ、それぞれのサイコロの出る目をX, Yとする。確率変数X, Yが独立であることを確かめる問題です。

確率確率変数独立性サイコロ確率分布
2025/4/13

例5において、確率変数XとYの取る任意の値aとbについて、$P(X=a, Y=b) = P(X=a)P(Y=b)$が成り立つことを確認する問題です。この式は、XとYが独立であるということを示しています...

確率確率変数独立性同時確率
2025/4/13

10円硬貨、50円硬貨、100円硬貨をそれぞれ1枚ずつ、合計3枚同時に投げたとき、表が出た硬貨の金額の和の期待値を求めよ。

期待値確率コイン
2025/4/13

正五角形ABCDEの頂点AにいるPさんが、さいころを振って出た目の数だけ反時計回りに頂点を移動する。 (1) さいころを1回振ったとき、Pさんが頂点Bにいる確率を求める。 (2) さいころを2回振った...

確率サイコロ期待値場合の数確率分布
2025/4/13

## 問題の内容

確率サイコロ正五角形場合の数
2025/4/13

3つのサイコロを同時に投げ、それぞれの出目を $X, Y, Z$ とするとき、出目の和 $X+Y+Z$ の期待値を求める問題です。

期待値確率変数サイコロ線形性
2025/4/13