点 $(1, 2)$ と直線 $x + \sqrt{3}y - 1 = 0$ との距離を求めます。

幾何学点と直線の距離幾何学公式
2025/4/8

1. 問題の内容

(1,2)(1, 2) と直線 x+3y1=0x + \sqrt{3}y - 1 = 0 との距離を求めます。

2. 解き方の手順

(x0,y0)(x_0, y_0) と直線 ax+by+c=0ax + by + c = 0 との距離 dd は、次の公式で求められます。
d=ax0+by0+ca2+b2d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}
この問題では、x0=1x_0 = 1, y0=2y_0 = 2, a=1a = 1, b=3b = \sqrt{3}, c=1c = -1 です。
これらの値を公式に代入して計算します。
d=11+32112+(3)2d = \frac{|1 \cdot 1 + \sqrt{3} \cdot 2 - 1|}{\sqrt{1^2 + (\sqrt{3})^2}}
d=1+2311+3d = \frac{|1 + 2\sqrt{3} - 1|}{\sqrt{1 + 3}}
d=234d = \frac{|2\sqrt{3}|}{\sqrt{4}}
d=232d = \frac{2\sqrt{3}}{2}
d=3d = \sqrt{3}

3. 最終的な答え

3\sqrt{3}

「幾何学」の関連問題

問題は以下の3つです。 (1) $\frac{\tan 3\theta}{\tan \theta}$ を $d = \cos^2 \theta$ を用いて表す。 (2) $\tan (60^\circ...

三角関数三角比加法定理tan
2025/6/15

三角形ABCがあり、点A, B, Cの位置ベクトルがそれぞれ $\vec{a}$, $\vec{b}$, $\vec{c}$ で与えられています。辺BCを2:1に外分する点をD、辺ABの中点をEとしま...

ベクトル外分点内分点三角形
2025/6/15

2点Aの位置ベクトルを $\vec{a}$、点Bの位置ベクトルを $\vec{b}$ とするとき、線分ABを以下の比に内分または外分する点の位置ベクトルを $\vec{a}$ と $\vec{b}$ ...

ベクトル内分点外分点位置ベクトル
2025/6/15

三角形ABCにおいて、辺BC, CA, ABの長さをそれぞれa, b, cとする。$\frac{a+b}{6}=\frac{b+c}{5}=\frac{c+a}{7}$であり、面積が$3\sqrt{1...

三角形余弦定理面積
2025/6/15

$AD // BC$である台形において、斜線部分の面積の和を求める問題です。台形の高さは6cm, 上底ADは5cm, 下底BCは9cmです。

台形面積三角錐体積立方体ねじれの位置
2025/6/15

問題10:平行四辺形ABCDにおいて、DC = DEのとき、∠xの大きさを求める。∠DAE = 70°、∠CDE = 23°と与えられている。 問題11:平行四辺形ABCDにおいて、辺BC上に点E、辺...

平行四辺形角度二等辺三角形図形
2025/6/15

平行四辺形ABCDにおいて、辺BC上に点Eを取り、DC=DEとする。このとき、三角形DBCと三角形EADが合同であることを証明する。証明の空欄を埋める問題である。

幾何平行四辺形合同証明
2025/6/15

点 $F(1, 0)$ からの距離と、直線 $x = -1$ からの距離の比が $\sqrt{2} : 1$ である点 $P$ の軌跡を求める問題です。

軌跡2次曲線双曲線距離座標
2025/6/15

はい、承知しました。以下の問題について回答します。

三角関数扇形弧の長さ面積三角関数の加法定理倍角の公式
2025/6/15

2点A(1, 4)とB(5, -2)を結ぶ線分ABの垂直二等分線の方程式を求める。

線分垂直二等分線座標平面方程式
2025/6/15