角錐・円錐の体積と球の体積・表面積を求める問題です。 (1) 底面積 $S$、高さを $h$ とする角錐・円錐の体積 $V$ を $S$ と $h$ を用いて表す。 (2) 半径 $r$ の球の体積 $V$ と表面積 $S$ をそれぞれ $r$ を用いて表す。

幾何学体積表面積角錐円錐
2025/4/9

1. 問題の内容

角錐・円錐の体積と球の体積・表面積を求める問題です。
(1) 底面積 SS、高さを hh とする角錐・円錐の体積 VVSShh を用いて表す。
(2) 半径 rr の球の体積 VV と表面積 SS をそれぞれ rr を用いて表す。

2. 解き方の手順

(1) 角錐・円錐の体積は、底面積 ×\times 高さ ×13\times \frac{1}{3} で求められます。したがって、
V=13ShV = \frac{1}{3}Sh
(2) 半径 rr の球の体積は 43πr3\frac{4}{3}\pi r^3 で求められます。
したがって、
V=43πr3V = \frac{4}{3}\pi r^3
半径 rr の球の表面積は 4πr24\pi r^2 で求められます。
したがって、
S=4πr2S = 4\pi r^2

3. 最終的な答え

(1) V=13ShV = \frac{1}{3}Sh
(2) V=43πr3V = \frac{4}{3}\pi r^3
S=4πr2S = 4\pi r^2

「幾何学」の関連問題

中心が直線 $y = 2x + 1$ 上にあり、かつ $x$ 軸に接し、点 $(-2, 3)$ を通る円の半径を求めよ。

座標平面接する方程式
2025/6/7

鋭角三角形の3辺の長さが1, 3, $a$であるとき、以下の問いに答える。 (1) $a$のとりうる値の範囲を求めよ。 (2) この三角形の外接円の半径が$\frac{9}{\sqrt{35}}$のと...

三角形鋭角三角形正弦定理余弦定理外接円辺の長さ
2025/6/7

半径 $x$ mの円形の土地の周りに幅 $a$ mの道がある。道の面積を $S$ m$^2$, 道の中央を通る線の長さを $l$ mとするとき、$S=al$ が成り立つことを証明するために、以下の問い...

面積円周証明数式処理
2025/6/7

四面体OABCにおいて、辺OAを1:3に内分する点をD、辺OBの中点をE、辺OCの中点をFとする。三角形DEFの重心をGとし、直線OGと平面ABCの交点をPとする。 (1) $\overrightar...

ベクトル空間図形四面体重心内分
2025/6/7

xy平面において、方程式 $x^2 + y^2 - 8px + 4py + 24p^2 - 8p + 3 = 0$ が与えられている。 (1) この方程式が円を表すような $p$ の値の範囲を求める。...

軌跡座標平面
2025/6/7

空間座標上に原点Oと3点A(1,3,0), B(-1,2,1), C(5,0,4)がある。 (1) 三角形OABの面積を求める。 (2) 四面体OABCの体積を求める。

ベクトル空間ベクトル外積三角形の面積四面体の体積
2025/6/7

$\triangle OAB$ において、線分 $OA$ の中点を $P$ とし、線分 $OB$ を $2:1$ に内分する点を $Q$ とする。線分 $AQ$ と線分 $BP$ の交点を $R$ と...

ベクトル内分点線分の交点一次独立
2025/6/7

問題は2つの部分に分かれています。 (1) ベクトル $\vec{a}, \vec{b}$ について、$|\vec{a}|=3$, $|\vec{b}|=2$, $|\vec{a}+\vec{b}|=...

ベクトル内積ベクトルの大きさ
2025/6/7

## 1. 問題の内容

ベクトル図形問題平行四辺形内分点線分の比
2025/6/7

平行四辺形ABCDにおいて、辺BCを3等分する点のうちCに近い点をEとする。直線AEと直線BDの交点をFとするとき、AF:AEを求めよ。

ベクトル平行四辺形線分の比図形問題
2025/6/7