以下の式の値を求める問題です。 $\frac{\frac{1}{2}log_3{32} + log_3{\sqrt{3}}}{\log_3{2}}$代数学対数対数関数式の計算数式処理2025/4/91. 問題の内容以下の式の値を求める問題です。12log332+log33log32\frac{\frac{1}{2}log_3{32} + log_3{\sqrt{3}}}{\log_3{2}}log3221log332+log332. 解き方の手順まず、分子を整理します。12log332=log332=log325=log3252\frac{1}{2}log_3{32} = log_3{\sqrt{32}} = log_3{\sqrt{2^5}} = log_3{2^{\frac{5}{2}}}21log332=log332=log325=log3225log33=log3312=12log_3{\sqrt{3}} = log_3{3^{\frac{1}{2}}} = \frac{1}{2}log33=log3321=21したがって、分子は以下のようになります。log3252+12=log3252+log3312=log3(252⋅312)log_3{2^{\frac{5}{2}}} + \frac{1}{2} = log_3{2^{\frac{5}{2}}} + log_3{3^{\frac{1}{2}}} = log_3{(2^{\frac{5}{2}} \cdot 3^{\frac{1}{2}})}log3225+21=log3225+log3321=log3(225⋅321)次に、式全体を書き換えます。log3(252⋅312)log32\frac{log_3{(2^{\frac{5}{2}} \cdot 3^{\frac{1}{2}})}}{log_3{2}}log32log3(225⋅321)対数の底の変換公式を用いて、底を2に変換します。log3x=log2xlog23log_3{x} = \frac{log_2{x}}{log_2{3}}log3x=log23log2xしたがって、log3(252⋅312)log32=log2(252⋅312)log23log22log23=log2(252⋅312)log22=log2(252⋅312)\frac{log_3{(2^{\frac{5}{2}} \cdot 3^{\frac{1}{2}})}}{log_3{2}} = \frac{\frac{log_2{(2^{\frac{5}{2}} \cdot 3^{\frac{1}{2}})}}{log_2{3}}}{\frac{log_2{2}}{log_2{3}}} = \frac{log_2{(2^{\frac{5}{2}} \cdot 3^{\frac{1}{2}})}}{log_2{2}} = log_2{(2^{\frac{5}{2}} \cdot 3^{\frac{1}{2}})}log32log3(225⋅321)=log23log22log23log2(225⋅321)=log22log2(225⋅321)=log2(225⋅321)log2(252⋅312)=log2252+log2312=52+12log23log_2{(2^{\frac{5}{2}} \cdot 3^{\frac{1}{2}})} = log_2{2^{\frac{5}{2}}} + log_2{3^{\frac{1}{2}}} = \frac{5}{2} + \frac{1}{2}log_2{3}log2(225⋅321)=log2225+log2321=25+21log23問題文の形式に合わせるため、元の式を以下のように変形します。12log332+log33log32=52log32+12log32=52log32log32+12log32=52+12log23\frac{\frac{1}{2}log_3{32} + log_3{\sqrt{3}}}{\log_3{2}} = \frac{\frac{5}{2}log_3{2} + \frac{1}{2}}{\log_3{2}} = \frac{\frac{5}{2}\log_3{2}}{\log_3{2}} + \frac{\frac{1}{2}}{\log_3{2}} = \frac{5}{2} + \frac{1}{2}log_2{3}log3221log332+log33=log3225log32+21=log3225log32+log3221=25+21log2312log332+log33log32=log32523log32=log2(2523)=log2(252)+log2(3)=52+12log23\frac{\frac{1}{2}log_3{32} + log_3{\sqrt{3}}}{\log_3{2}} = \frac{log_3{2^{\frac{5}{2}}\sqrt{3}}}{log_3{2}} = log_2(2^{\frac{5}{2}}\sqrt{3}) = log_2(2^{\frac{5}{2}}) + log_2(\sqrt{3}) = \frac{5}{2} + \frac{1}{2}log_2{3}log3221log332+log33=log32log32253=log2(2253)=log2(225)+log2(3)=25+21log23ここで、問題文の形式から逆算すると、52log32+12log32=52log32+12log32=52+12log32=52+12log23=52+12∗log33log32=52+12∗1log32=52+12log32 \frac{\frac{5}{2}log_3 2 + \frac{1}{2}}{log_3 2} = \frac{\frac{5}{2}log_3 2 + \frac{1}{2}}{log_3 2} = \frac{5}{2} + \frac{1}{2log_3 2} = \frac{5}{2} + \frac{1}{2}log_2 3 = \frac{5}{2} + \frac{1}{2} * \frac{log_3 3}{log_3 2} = \frac{5}{2} + \frac{1}{2} * \frac{1}{log_3 2} = \frac{5}{2} + \frac{1}{2log_3 2}log3225log32+21=log3225log32+21=25+2log321=25+21log23=25+21∗log32log33=25+21∗log321=25+2log321すると、52=5log322log32 \frac{5}{2} = \frac{5log_3 2}{2log_3 2}25=2log325log32 なので5log322+12log32=5log32+12log32=5log32+12log32\frac{\frac{5log_3 2}{2} + \frac{1}{2}}{log_3 2} = \frac{\frac{5log_3 2 + 1}{2}}{log_3 2} = \frac{5log_3 2 + 1}{2log_3 2}log3225log32+21=log3225log32+1=2log325log32+1さらに、問題の形式に近づけるため、分子をlog3 log_3 log3でまとめる5log32+1=log3(25)+log33=log3(32∗3)=log3(96)5log_3 2 + 1 = log_3 (2^5) + log_3 3 = log_3 (32*3) = log_3 (96) 5log32+1=log3(25)+log33=log3(32∗3)=log3(96)log3962log32=log396log34=log496\frac{log_3 96}{2log_3 2} = \frac{log_3 96}{log_3 4} = log_4 96 2log32log396=log34log396=log496ここで96=4∗24 96 = 4 * 24 96=4∗24なのでlog496=log4(4∗24)=log44+log424=1+log424=1+log4(4∗6)=2+log46log_4 96 = log_4 (4 * 24) = log_4 4 + log_4 24 = 1 + log_4 24 = 1 + log_4 (4 * 6) = 2 + log_4 6log496=log4(4∗24)=log44+log424=1+log424=1+log4(4∗6)=2+log46元に戻ってlog3(323)log32=log3(25∗312)log32=5log32+12log32=52+12log32=52+12log23\frac{log_3 (32\sqrt3)}{log_3 2} = \frac{log_3 (2^5 * 3^\frac{1}{2})}{log_3 2} = \frac{5log_3 2 + \frac{1}{2}}{log_3 2} = \frac{5}{2} + \frac{1}{2log_3 2} = \frac{5}{2} + \frac{1}{2}log_2 3log32log3(323)=log32log3(25∗321)=log325log32+21=25+2log321=25+21log23.52=5log322log32\frac{5}{2} = \frac{5log_3 2}{2 log_3 2}25=2log325log32.よって、52log32+12log32=1log32∗5log32+12=5log32+12log32\frac{\frac{5}{2}log_3 2 + \frac{1}{2} }{log_3 2} = \frac{1}{log_3 2} * \frac{5log_3 2 + 1}{2} = \frac{5log_3 2 + 1}{2log_3 2}log3225log32+21=log321∗25log32+1=2log325log32+1.5log32+1=log3(25)+log33=log332+log33=log3965log_3 2 + 1 = log_3 (2^5) + log_3 3 = log_3 32 + log_3 3 = log_3 965log32+1=log3(25)+log33=log332+log33=log396.2log32=log342log_3 2 = log_3 42log32=log34.log396log34=log496=log46∗4∗4=2+log46\frac{log_3 96}{log_3 4} = log_4 96 = log_4 6*4*4 = 2+log_4 6log34log396=log496=log46∗4∗4=2+log463. 最終的な答えケ=5, ク=1