A地点からB地点まで、最短距離で進む道順が何通りあるかを求める問題です。図は3x3のマス目状の道を示しています。

離散数学組み合わせ最短経路組み合わせ論
2025/4/9

1. 問題の内容

A地点からB地点まで、最短距離で進む道順が何通りあるかを求める問題です。図は3x3のマス目状の道を示しています。

2. 解き方の手順

最短経路でAからBに行くためには、右に3回、下に3回移動する必要があります。したがって、合計6回の移動のうち、右に移動する3回をどこにするか決めれば、残りの3回は下に移動することになります。これは、6回の移動から右に移動する3回を選ぶ組み合わせの数として計算できます。
組み合わせの公式は次の通りです。
nCr=n!r!(nr)!{}_n C_r = \frac{n!}{r!(n-r)!}
ここで、nnは全体の数、rrは選ぶ数です。
この問題では、n=6n = 6(全体の移動回数)で、r=3r = 3(右への移動回数)となります。
したがって、求める道順の数は次のようになります。
6C3=6!3!(63)!=6!3!3!=6×5×4×3×2×1(3×2×1)(3×2×1)=6×5×43×2×1=1206=20{}_6 C_3 = \frac{6!}{3!(6-3)!} = \frac{6!}{3!3!} = \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(3 \times 2 \times 1)} = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = \frac{120}{6} = 20

3. 最終的な答え

20 通り

「離散数学」の関連問題

長さ6の順列 $A = (4, 2, 5, 3, 6, 1)$が与えられている。 (1) 順列Aの転倒数を求める。 (2) 順列Aの符号を求める。

順列転倒数符号組み合わせ論
2025/6/5

(1) 全体集合 $U = \{1, 2, 3, 4, 5, 6, 7\}$、部分集合 $A = \{1, 3, 5, 6, 7\}$、 $B = \{2, 3, 6, 7\}$ が与えられたとき、$...

集合集合の演算要素数包含と排除の原理
2025/6/5

問題は、集合AとBについて、$A \cap B = A \cup B$ が成り立つかどうかを、図を用いて確認することです。

集合集合演算共通部分和集合ベン図
2025/6/5

1から5までの5個の数字をすべて1回ずつ使って5桁の整数を作る。 (1) 千の位が奇数であるような整数は何個あるか。 (2) 1,2,3が隣り合うような整数は何個あるか。

順列組み合わせ場合の数
2025/6/5

9冊の異なる本を、以下の(1)から(4)の条件で分ける方法がそれぞれ何通りあるかを求める問題です。 (1) 3冊ずつ3人に分ける。 (2) 3冊ずつ3組に分ける。 (3) 2冊、3冊、4冊の3組に分け...

組み合わせ場合の数順列
2025/6/5

全体集合を $U = \{x | 1 \leq x \leq 10, x \text{は整数}\}$ とする。$U$ の部分集合 $A = \{1, 2, 3, 5, 7\}$ と $B = \{2,...

集合集合演算補集合和集合積集合
2025/6/5

全体集合を $U = \{x | 1 \leq x \leq 10, x \text{ は整数} \}$ とします。 $U$ の部分集合 $A = \{1, 2, 3, 5, 7\}$、$B = \{...

集合補集合和集合共通部分
2025/6/5

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ の部分集合 $A = \{4, 7, 9\}$ と $B = \{1, 3, 4, 7, 8\}$ が与えられたとき、...

集合集合演算補集合和集合
2025/6/5

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ の部分集合 $A = \{4, 7, 9\}$ と $B = \{1, 3, 4, 7, 8\}$ が与えられています...

集合集合演算補集合共通部分
2025/6/5

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ と、その部分集合 $A = \{4, 7, 9\}$ および $B = \{1, 3, 4, 7, 8\}$ が与えら...

集合集合演算和集合共通部分補集合差集合
2025/6/5