6人の生徒を、2人ずつ3つのグループに分ける分け方の総数を求める問題です。

離散数学組み合わせ場合の数グループ分け順列
2025/4/9

1. 問題の内容

6人の生徒を、2人ずつ3つのグループに分ける分け方の総数を求める問題です。

2. 解き方の手順

まず、6人の中から2人を選ぶ組み合わせを計算します。これは 6C2_6C_2 で表されます。
6C2=6!2!(62)!=6!2!4!=6×52×1=15_6C_2 = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \times 5}{2 \times 1} = 15 通り。
次に、残りの4人の中から2人を選ぶ組み合わせを計算します。これは 4C2_4C_2 で表されます。
4C2=4!2!(42)!=4!2!2!=4×32×1=6_4C_2 = \frac{4!}{2!(4-2)!} = \frac{4!}{2!2!} = \frac{4 \times 3}{2 \times 1} = 6 通り。
最後に、残りの2人は1つのグループとして確定します。これは 2C2=1_2C_2 = 1 通りです。
したがって、2人ずつの3つのグループに分ける組み合わせの数は、 15×6×1=9015 \times 6 \times 1 = 90 通りとなります。
しかし、3つのグループには区別がないため、グループの並び順を考慮する必要があります。3つのグループの並び順は 3!=3×2×1=63! = 3 \times 2 \times 1 = 6 通りあります。したがって、グループの区別をなくすために、先ほど求めた数を 3!3! で割る必要があります。
903!=906=15\frac{90}{3!} = \frac{90}{6} = 15

3. 最終的な答え

15通り

「離散数学」の関連問題

長さ6の順列 $A = (4, 2, 5, 3, 6, 1)$が与えられている。 (1) 順列Aの転倒数を求める。 (2) 順列Aの符号を求める。

順列転倒数符号組み合わせ論
2025/6/5

(1) 全体集合 $U = \{1, 2, 3, 4, 5, 6, 7\}$、部分集合 $A = \{1, 3, 5, 6, 7\}$、 $B = \{2, 3, 6, 7\}$ が与えられたとき、$...

集合集合の演算要素数包含と排除の原理
2025/6/5

問題は、集合AとBについて、$A \cap B = A \cup B$ が成り立つかどうかを、図を用いて確認することです。

集合集合演算共通部分和集合ベン図
2025/6/5

1から5までの5個の数字をすべて1回ずつ使って5桁の整数を作る。 (1) 千の位が奇数であるような整数は何個あるか。 (2) 1,2,3が隣り合うような整数は何個あるか。

順列組み合わせ場合の数
2025/6/5

9冊の異なる本を、以下の(1)から(4)の条件で分ける方法がそれぞれ何通りあるかを求める問題です。 (1) 3冊ずつ3人に分ける。 (2) 3冊ずつ3組に分ける。 (3) 2冊、3冊、4冊の3組に分け...

組み合わせ場合の数順列
2025/6/5

全体集合を $U = \{x | 1 \leq x \leq 10, x \text{は整数}\}$ とする。$U$ の部分集合 $A = \{1, 2, 3, 5, 7\}$ と $B = \{2,...

集合集合演算補集合和集合積集合
2025/6/5

全体集合を $U = \{x | 1 \leq x \leq 10, x \text{ は整数} \}$ とします。 $U$ の部分集合 $A = \{1, 2, 3, 5, 7\}$、$B = \{...

集合補集合和集合共通部分
2025/6/5

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ の部分集合 $A = \{4, 7, 9\}$ と $B = \{1, 3, 4, 7, 8\}$ が与えられたとき、...

集合集合演算補集合和集合
2025/6/5

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ の部分集合 $A = \{4, 7, 9\}$ と $B = \{1, 3, 4, 7, 8\}$ が与えられています...

集合集合演算補集合共通部分
2025/6/5

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ と、その部分集合 $A = \{4, 7, 9\}$ および $B = \{1, 3, 4, 7, 8\}$ が与えら...

集合集合演算和集合共通部分補集合差集合
2025/6/5