与えられた関数について、$\frac{dy}{dx}$を求める問題です。 (1) $x = 2y^2 + 3\sqrt{y}$ (2) $\tan x + \frac{\log y}{3\sqrt{y}} = 5$解析学微分陰関数導関数連鎖律2025/4/91. 問題の内容与えられた関数について、dydx\frac{dy}{dx}dxdyを求める問題です。(1) x=2y2+3yx = 2y^2 + 3\sqrt{y}x=2y2+3y(2) tanx+logy3y=5\tan x + \frac{\log y}{3\sqrt{y}} = 5tanx+3ylogy=52. 解き方の手順(1) x=2y2+3yx = 2y^2 + 3\sqrt{y}x=2y2+3y の両辺を xxx で微分します。dxdx=ddx(2y2+3y1/2)\frac{dx}{dx} = \frac{d}{dx}(2y^2 + 3y^{1/2})dxdx=dxd(2y2+3y1/2)1=(4y+32y−1/2)dydx1 = (4y + \frac{3}{2}y^{-1/2})\frac{dy}{dx}1=(4y+23y−1/2)dxdydydx=14y+32y−1/2\frac{dy}{dx} = \frac{1}{4y + \frac{3}{2}y^{-1/2}}dxdy=4y+23y−1/21dydx=14y+32y\frac{dy}{dx} = \frac{1}{4y + \frac{3}{2\sqrt{y}}}dxdy=4y+2y31(2) tanx+logy3y=5\tan x + \frac{\log y}{3\sqrt{y}} = 5tanx+3ylogy=5 の両辺を xxx で微分します。ddx(tanx)+ddx(logy3y)=ddx(5)\frac{d}{dx}(\tan x) + \frac{d}{dx}(\frac{\log y}{3\sqrt{y}}) = \frac{d}{dx}(5)dxd(tanx)+dxd(3ylogy)=dxd(5)ddx(tanx)=1cos2x\frac{d}{dx}(\tan x) = \frac{1}{\cos^2 x}dxd(tanx)=cos2x1ddx(logy3y)=13ddx(logyy)\frac{d}{dx}(\frac{\log y}{3\sqrt{y}}) = \frac{1}{3}\frac{d}{dx}(\frac{\log y}{\sqrt{y}})dxd(3ylogy)=31dxd(ylogy)積の微分法則を適用して、ddx(logyy)=1ydydxy−logy12ydydxy\frac{d}{dx}(\frac{\log y}{\sqrt{y}}) = \frac{\frac{1}{y} \frac{dy}{dx} \sqrt{y} - \log y \frac{1}{2\sqrt{y}}\frac{dy}{dx}}{y}dxd(ylogy)=yy1dxdyy−logy2y1dxdy=1y−logy2yydydx= \frac{\frac{1}{\sqrt{y}} - \frac{\log y}{2\sqrt{y}}}{y} \frac{dy}{dx}=yy1−2ylogydxdy=2−logy2yydydx=2−logy2y3/2dydx= \frac{2 - \log y}{2y\sqrt{y}} \frac{dy}{dx} = \frac{2 - \log y}{2y^{3/2}} \frac{dy}{dx}=2yy2−logydxdy=2y3/22−logydxdyしたがって、1cos2x+132−logy2y3/2dydx=0\frac{1}{\cos^2 x} + \frac{1}{3}\frac{2 - \log y}{2y^{3/2}}\frac{dy}{dx} = 0cos2x1+312y3/22−logydxdy=0dydx=−1cos2x2−logy6y3/2=−6y3/2cos2x(2−logy)\frac{dy}{dx} = - \frac{\frac{1}{\cos^2 x}}{\frac{2 - \log y}{6y^{3/2}}} = - \frac{6y^{3/2}}{\cos^2 x(2 - \log y)}dxdy=−6y3/22−logycos2x1=−cos2x(2−logy)6y3/23. 最終的な答え(1) dydx=14y+32y\frac{dy}{dx} = \frac{1}{4y + \frac{3}{2\sqrt{y}}}dxdy=4y+2y31(2) dydx=−6y3/2cos2x(2−logy)\frac{dy}{dx} = - \frac{6y^{3/2}}{\cos^2 x(2 - \log y)}dxdy=−cos2x(2−logy)6y3/2