問題は、式 $(x-1)(x-3)(x-5)(x-7)+15$ を計算することです。代数学多項式の展開因数分解置換二次式2025/4/91. 問題の内容問題は、式 (x−1)(x−3)(x−5)(x−7)+15(x-1)(x-3)(x-5)(x-7)+15(x−1)(x−3)(x−5)(x−7)+15 を計算することです。2. 解き方の手順まず、式 (x−1)(x−3)(x−5)(x−7)+15(x-1)(x-3)(x-5)(x-7)+15(x−1)(x−3)(x−5)(x−7)+15 を展開します。(x−1)(x−7)=x2−8x+7(x-1)(x-7) = x^2 - 8x + 7(x−1)(x−7)=x2−8x+7(x−3)(x−5)=x2−8x+15(x-3)(x-5) = x^2 - 8x + 15(x−3)(x−5)=x2−8x+15したがって、(x−1)(x−3)(x−5)(x−7)+15=(x2−8x+7)(x2−8x+15)+15(x-1)(x-3)(x-5)(x-7)+15 = (x^2 - 8x + 7)(x^2 - 8x + 15) + 15(x−1)(x−3)(x−5)(x−7)+15=(x2−8x+7)(x2−8x+15)+15y=x2−8xy = x^2 - 8xy=x2−8x と置換すると、(y+7)(y+15)+15=y2+22y+105+15=y2+22y+120(y+7)(y+15) + 15 = y^2 + 22y + 105 + 15 = y^2 + 22y + 120(y+7)(y+15)+15=y2+22y+105+15=y2+22y+120y2+22y+120=(y+10)(y+12)y^2 + 22y + 120 = (y+10)(y+12)y2+22y+120=(y+10)(y+12)y=x2−8xy = x^2 - 8xy=x2−8x を代入すると、(x2−8x+10)(x2−8x+12)(x^2 - 8x + 10)(x^2 - 8x + 12)(x2−8x+10)(x2−8x+12)(x2−8x+10)(x2−8x+12)=(x2−8x+10)(x−2)(x−6)(x^2 - 8x + 10)(x^2 - 8x + 12) = (x^2 - 8x + 10)(x-2)(x-6)(x2−8x+10)(x2−8x+12)=(x2−8x+10)(x−2)(x−6)別の解き方(x−1)(x−3)(x−5)(x−7)+15(x-1)(x-3)(x-5)(x-7) + 15(x−1)(x−3)(x−5)(x−7)+15x=4x = 4x=4を代入すると(4−1)(4−3)(4−5)(4−7)+15=(3)(1)(−1)(−3)+15=9+15=24(4-1)(4-3)(4-5)(4-7)+15 = (3)(1)(-1)(-3)+15 = 9+15 = 24(4−1)(4−3)(4−5)(4−7)+15=(3)(1)(−1)(−3)+15=9+15=24((x−1)(x−7))((x−3)(x−5))+15=(x2−8x+7)(x2−8x+15)+15((x-1)(x-7))((x-3)(x-5)) + 15 = (x^2-8x+7)(x^2-8x+15)+15((x−1)(x−7))((x−3)(x−5))+15=(x2−8x+7)(x2−8x+15)+15ここで、A=x2−8xA = x^2 - 8xA=x2−8x とおくと、(A+7)(A+15)+15=A2+22A+105+15=A2+22A+120=(A+10)(A+12)(A+7)(A+15)+15 = A^2 + 22A + 105+15 = A^2 + 22A + 120 = (A+10)(A+12)(A+7)(A+15)+15=A2+22A+105+15=A2+22A+120=(A+10)(A+12)したがって、 (x2−8x+10)(x2−8x+12)=(x2−8x+10)(x−2)(x−6)(x^2-8x+10)(x^2-8x+12) = (x^2-8x+10)(x-2)(x-6)(x2−8x+10)(x2−8x+12)=(x2−8x+10)(x−2)(x−6)3. 最終的な答え(x2−8x+10)(x2−8x+12)(x^2 - 8x + 10)(x^2 - 8x + 12)(x2−8x+10)(x2−8x+12) または (x2−8x+10)(x−2)(x−6)(x^2-8x+10)(x-2)(x-6)(x2−8x+10)(x−2)(x−6)