関数 $y = f(x) = e^{50x}$ の導関数を求める問題です。

解析学微分指数関数導関数指数関数の微分
2025/4/11

1. 問題の内容

関数 y=f(x)=e50xy = f(x) = e^{50x} の導関数を求める問題です。

2. 解き方の手順

指数関数の微分公式 ddxeax=aeax\frac{d}{dx} e^{ax} = ae^{ax} を用います。
この問題の場合、a=50a = 50 です。
したがって、
dydx=ddxe50x=50e50x\frac{dy}{dx} = \frac{d}{dx} e^{50x} = 50e^{50x}

3. 最終的な答え

y=50e50xy' = 50e^{50x}

「解析学」の関連問題

与えられた積分 $\int (2x+1)(x^2+x-5) dx$ を、$t = x^2 + x - 5$ と置換して計算します。

積分置換積分不定積分
2025/5/31

与えられた3つの極限を計算する問題です。 (1) $\lim_{x\to\infty} \frac{2-3x^2}{x^2+2x}$ (2) $\lim_{x\to\infty} \frac{x^2-...

極限関数の極限数列の極限不定形
2025/5/31

与えられた積分 $\int x\sqrt{x^2 + 4} \, dx$ を、$t = x^2 + 4$ という変数変換を用いて解きます。

積分変数変換不定積分
2025/5/31

$\log |\csc x|$ の微分を計算します。

微分三角関数対数関数合成関数の微分csc xcot x
2025/5/31

次の3つの極限値を求める問題です。 (1) $\lim_{x \to -1} (x-1)(x+2)(x-3)$ (2) $\lim_{x \to 3} \frac{x^2-3}{x-2}$ (3) $...

極限多項式関数代入法
2025/5/31

以下の三角関数の値を計算し、空欄を埋める。また、sinをcosに、cosをsinに変換する。 * $\sin(\frac{7}{4}\pi)$ * $\tan(-\frac{11}{4}\pi...

三角関数三角関数の値三角関数の変換加法定理
2025/5/31

次の定積分を計算します。 $\int_{-2}^{2\sqrt{2}} \frac{dx}{\sqrt{16-x^2}}$

定積分逆三角関数置換積分
2025/5/31

与えられた定積分の計算を行います。具体的には、$\int_{-2}^{4} 2x^2 dx + \int_{5}^{-2} 2x^2 dx$ を計算します。

定積分積分計算積分
2025/5/31

次の逆三角関数の値を求める問題です。 (1) $\sin^{-1}(-\frac{\sqrt{3}}{2})$ (2) $\cos^{-1}(\frac{1}{\sqrt{2}})$ (3) $\se...

逆三角関数三角関数弧度法
2025/5/31

問題1309の(8)の定積分を計算する問題です。 積分は $\int_{-1}^{1} (x + \frac{1}{2})^2 dx$ です。

定積分積分多項式
2025/5/31